Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arrouays, D.; Lagacherie, P.; Hartemink, A. Digital soil mapping across the globe. Geoderma Reg. 2017, 9, 1–4. [Google Scholar] [CrossRef]
- Ludwig, M.; Wilmes, P.; Schrader, S. Measuring soil sustainability via soil resilience. Sci. Total Environ. 2018, 626, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Stolte, J.; Tesfai, M.; Oygarden, L.; Kvaerno, S.; Keizer, J.; Verheijen, F.; Panagos, P.; Ballabio, C.; Hessel, R. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services: Deliverable 2.1 RECARE Project; European Commission DG Joint Research Centre: Strasbourg, France, 2016. [Google Scholar]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake re-gion, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil Salinity Type Effects on the Rela-tionship between the Electrical Conductivity and Salt Content for 1: 5 Soil-to-Water Extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Seifi, M.; Ahmadi, A.; Neyshabouri, M.R.; Taghizadeh-Mehrjardi, R.; Bahrami, H.A. Remote and Vis-NIR pectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran. Remote Sensing Appl. Soc. Environ. 2020, 20, 100398. [Google Scholar]
- Jiang, H.; Shu, H. Optical remote-sensing data based research on detecting soil salinity at different depth in an arid-area oasis, Xinjiang, China. Earth Sci. Inform. 2018, 12, 43–56. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Ma-chine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Planet Imagery and Archive Home Page. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 9 January 2021).
- Alpu 2012. Available online: http://bebka.org.tr/admin/datas/sayfas/198/alpu-ilce-raporu_1568787633.pdf (accessed on 9 January 2021).
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and mod-erately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S. Using remote sensing techniques for appraisal of irrigated soil salinity. Int. Congr. Model. Simul. (MODSIM) Model. Simul. Soc. Aust. 2007, 2632–2638. [Google Scholar]
Spectral Indices | Formula | Reference |
---|---|---|
SI-1 | [15] | |
SI-2 | [15] | |
SI-3 | [15] | |
SI-4 | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avdan, U.; Kaplan, G.; Avdan, Z.Y.; Matci, D.K.; Erdem, F.; Mizik, E.T.; Demirtas, I. Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields. Biol. Life Sci. Forum 2021, 3, 48. https://doi.org/10.3390/IECAG2021-09741
Avdan U, Kaplan G, Avdan ZY, Matci DK, Erdem F, Mizik ET, Demirtas I. Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields. Biology and Life Sciences Forum. 2021; 3(1):48. https://doi.org/10.3390/IECAG2021-09741
Chicago/Turabian StyleAvdan, Ugur, Gordana Kaplan, Zehra Yigit Avdan, Dilek Kucuk Matci, Firat Erdem, Ece Tugba Mizik, and Ilknur Demirtas. 2021. "Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields" Biology and Life Sciences Forum 3, no. 1: 48. https://doi.org/10.3390/IECAG2021-09741
APA StyleAvdan, U., Kaplan, G., Avdan, Z. Y., Matci, D. K., Erdem, F., Mizik, E. T., & Demirtas, I. (2021). Comparison of Remote Sensing Soil Electrical Conductivity from PlanetScope and Ground Measured Data in Wheat and Beet Yields. Biology and Life Sciences Forum, 3(1), 48. https://doi.org/10.3390/IECAG2021-09741