Cow Milk Oligosaccharides and Their Relevance to Infant Nutrition †
Abstract
:1. Introduction
2. Cow Milk Oligosaccharides in Ancient Literature and Ayurveda
3. Classification of Cow Milk Oligosaccharides
4. Oligosaccharides Abundance in Cow Milk:
5. Improved Extraction Methods of CMOs and Other Milk Oligosaccharides
6. Biological Importance of CMOs
7. Oligosaccharides for Health
8. Cow and Human Milk Similarities in Supporting Bifidobacteria Growth
9. Effects of Sialylated Milk Oligosaccharides
10. Knowledge Gap
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Sun, S.; Yan, J.; Wang, H.; Zhou, J.; Gao, H.; Xie, W.; Li, Y.; Chai, W. Identification of Carbohydrate Peripheral Epitopes Important for Recognition by Positive-Ion MALDI Multistage Mass Spectrometry. Carbohydr. Polym. 2020, 229, 115528. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, J.; Wang, Y.; Wang, R.; Hao, X.; Wang, R.; Zheng, Y.; An, X.; Qi, J. Feruloyl Oligosaccharides, Isolated from Bacterial Fermented Wheat Bran, Exhibit Antioxidant Effects in IPEC-J2 Cells and Zebrafish Model. Food Sci. Nutr. 2023, 11, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Ojwach, J.; Adetunji, A.I.; Mutanda, T.; Mukaratirwa, S. Oligosaccharides Production from Coprophilous Fungi: An Emerging Functional Food with Potential Health-Promoting Properties. Biotechnol. Rep. 2022, 33, e00702. [Google Scholar] [CrossRef] [PubMed]
- Orihara, K.; Yahagi, K.; Saito, Y.; Watanabe, Y.; Sasai, T.; Hara, T.; Tsukuda, N.; Oki, K.; Fujimoto, J.; Matsuki, T. Characterization of Bifidobacterium Kashiwanohense That Utilizes Both Milk- and Plant-Derived Oligosaccharides. Gut Microbes 2023, 15, 2207455. [Google Scholar] [CrossRef]
- Fukuda, K.; Yamamoto, A.; Ganzorig, K.; Khuukhenbaatar, J.; Senda, A.; Saito, T.; Urashima, T. Chemical Characterization of the Oligosaccharides in Bactrian Camel (Camelus Bactrianus) Milk and Colostrum. J. Dairy Sci. 2010, 93, 5572–5587. [Google Scholar] [CrossRef]
- Aldredge, D.L.; Geronimo, M.R.; Hua, S.; Nwosu, C.C.; Lebrilla, C.B.; Barile, D. Annotation and Structural Elucidation of Bovine Milk Oligosaccharides and Determination of Novel Fucosylated Structures. Glycobiology 2013, 23, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.D.; Wei, Z.; Lemay, D.G.; Lange, M.C.; Barile, D. Creation of a Milk Oligosaccharide Database, MilkOligoDB, Reveals Common Structural Motifs and Extensive Diversity across Mammals. Sci. Rep. 2023, 13, 10345. [Google Scholar] [CrossRef]
- Quinn, E.M.; Joshi, L.; Hickey, R.M. Symposium Review: Dairy-Derived Oligosaccharides—Their Influence on Host–Microbe Interactions in the Gastrointestinal Tract of Infants. J. Dairy Sci. 2020, 103, 3816–3827. [Google Scholar] [CrossRef]
- Bode, L. Human Milk Oligosaccharides: Every Baby Needs a Sugar Mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef]
- Sischo, W.M.; Short, D.M.; Geissler, M.; Bunyatratchata, A.; Barile, D. Comparative Composition, Diversity, and Abundance of Oligosaccharides in Early Lactation Milk from Commercial Dairy and Beef Cows. J. Dairy Sci. 2017, 100, 3883–3892. [Google Scholar] [CrossRef]
- Vandenplas, Y. Oligosaccharides in Infant Formula. Br. J. Nutr. 2002, 87, S293–S296. [Google Scholar] [CrossRef]
- Akkerman, R.; Faas, M.M.; de Vos, P. Non-Digestible Carbohydrates in Infant Formula as Substitution for Human Milk Oligosaccharide Functions: Effects on Microbiota and Gut Maturation. Crit. Rev. Food Sci. Nutr. 2019, 59, 1486–1497. [Google Scholar] [CrossRef]
- Gunjan; Kumar, K.; Deepak, D. Structural Characterization of Novel Milk Oligosaccharide Aurose from Cow Colostrum. J. Mol. Struct. 2019, 1176, 394–401. [Google Scholar] [CrossRef]
- Gunjan; Yadav, S.; Shukla, M.; Deepak, D. Isolation and Structure Elucidation of a Novel Nonasaccharide ‘Tarose’ from Bos Primigenius Taurus (Jarsi Cow) Colostrum. J. Biol. Chem. Res. 2022, 39, 243–263. [Google Scholar]
- Roy, T.; Deepak, D. Antioxidant Properties of Milk Oligosaccharides from Various Ruminants. Int. J. Pharma Bio Sci. 2014, 5, B-400–B-408. [Google Scholar]
- Ranjan, A.K.; Sharma, M.; Shukla, M.; Deepak, D. Structure Elucidation of a Novel Pentasaccharide Ariesose from Ovies Aries Milk by 2-Dimensional NMR and Mass Spectrometry. Trends Carbohydr. Res. 2023, 15, 9–21. [Google Scholar]
- Ten Bruggencate, S.J.; Bovee-Oudenhoven, I.M.; Feitsma, A.L.; van Hoffen, E.; Schoterman, M.H. Functional Role and Mechanisms of Sialyllactose and Other Sialylated Milk Oligosaccharides. Nutr. Rev. 2014, 72, 377–389. [Google Scholar] [CrossRef]
- Saito, T.; Itoh, T.; Adachi, S. Presence of Two Neutral Disaccharides Containing N-Acetylhexosamine in Bovine Colostrum as Free Forms. Biochim. Biophys. Acta -Gen. Subj. 1984, 801, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Itoh, T.; Adachi, S.; Suzuki, T.; Usui, T. The Chemical Structure of Neutral and Acidic Sugar Chains Obtained from Bovine Colostrum κ-Casein. BBA -Gen. Subj. 1981, 678, 257–267. [Google Scholar] [CrossRef]
- Urashima, T.; Saito, T.; Ohmisya, K.; Shimazaki, K. Structural Determination of Three Neutral Oligosaccharides in Bovine (Holstein-Friesian) Colostrum, Including the Novel Trisaccharide; GalNAcαl-3Galβ1-4Glc. Biochim. Biophys. Acta -Gen. Subj. 1991, 1073, 225–229. [Google Scholar] [CrossRef]
- Tao, N.; Ochonicky, K.L.; German, J.B.; Donovan, S.M.; Lebrilla, C.B. Structural Determination and Daily Variations of Porcine Milk Oligosaccharides. J. Agric. Food Chem. 2010, 58, 4653–4659. [Google Scholar] [CrossRef]
- Nakajima, K.; Kinoshita, M.; Matsushita, N.; Urashima, T.; Suzuki, M.; Suzuki, A.; Kakehi, K. Capillary Affinity Electrophoresis Using Lectins for the Analysis of Milk Oligosaccharide Structure and Its Application to Bovine Colostrum Oligosaccharides. Anal. Biochem. 2006, 348, 105–114. [Google Scholar] [CrossRef]
- Singh, A.K.; Deepak, D. Isolation and Structure Elucidation of Novel Yak Milk Oligosaccharide “Nienose”. Trends Carbohydr. Res. 2020, 12, 15–26. [Google Scholar]
- Verma, P.; Sarkar, J.; Deepak, D. Isolation, Purification and Structure Elucidation of Novel Hexasaccharide Mesose from Camel Milk by NMR. Trends Carbohydr. Res. 2019, 11, 52–58. [Google Scholar]
- Meng, X.P.; Jiao, S.M.; Qin, S.Q.; Yang, X.B.; Li, J.S.; Wei, J.H.; Wang, Z.; Du, Y.G.; Xian-Pu, M.; Si-Ming, J.; et al. Comparative Study on Milk Oligosaccharides in Buffalo and Cow Colostrum Milk. Prog. Biochem. Biophys. 2017, 44, 942–948. [Google Scholar] [CrossRef]
- Raju, T.S.; Briggs, J.B.; Borge, S.M.; Jones, A.J.S. Species-Specific Variation in Glycosylation of Igc: Evidence for the Species-Specific Sialylation and Branch-Specific Galactosylation and Importance for Engineering Recombinant Glycoprotein Therapeutics. Glycobiology 2000, 10, 477–486. [Google Scholar] [CrossRef]
- Pyles, M.B.; Brock, K.; Schendel, R.R.; Lawrence, L.M. Improved Methods for Mare Milk Analysis: Extraction and Quantification of Mare Milk Carbohydrates and Assessment of FTIR-Based Macronutrient Quantification. Front. Nutr. 2023, 10, 1066463. [Google Scholar] [CrossRef]
- Mariño, K.; Lane, J.A.; Abrahams, J.L.; Struwe, W.B.; Harvey, D.J.; Marotta, M.; Hickey, R.M.; Rudd, P.M. Method for Milk Oligosaccharide Profiling by 2-Aminobenzamide Labeling and Hydrophilic Interaction Chromatography. Glycobiology 2011, 21, 1317–1330. [Google Scholar] [CrossRef]
- de Moura Bell, J.M.L.N.; Cohen, J.L.; de Aquino, L.F.M.C.; Lee, H.; de Melo Silva, V.L.; Liu, Y.; Domizio, P.; Barile, D. An Integrated Bioprocess to Recover Bovine Milk Oligosaccharides from Colostrum Whey Permeate. J. Food Eng. 2018, 216, 27–35. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Toivanen, M.; Leinonen, A.; Frängsmyr, L.; Strömberg, N.; Lapinjoki, S.; Nassif, X.; Tikkanen-Kaukanen, C. Human and Bovine Milk Oligossaccharides Inhibit Neisseria Meningitidis Pili Attachment in Vitro. J. Nutr. 2005, 135, 2445–2448. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, L.M.A.; Sundekilde, U.K.; Andersen, H.J.; Nielsen, D.S.; Bertram, H.C. Lactose and Bovine Milk Oligosaccharides Synergistically Stimulate B. Longum Subsp. Longum Growth in a Simplified Model of the Infant Gut Microbiome. J. Proteome Res. 2019, 18, 3086–3098. [Google Scholar] [CrossRef]
- Johansson, P.; Nilsson, J.; Ångström, J.; Miller-Podraza, H. Interaction of Helicobacter Pylori with Sialylated Carbohydrates: The Dependence on Different Parts of the Binding Trisaccharide Neu5Acα 3Galβ4GlcNAc. Glycobiology 2005, 15, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.J.; Martín-Sosa, S.; Hueso, P. Binding of Milk Oligosaccharides by Several Enterotoxigenic Escherichia Coli Strains Isolated from Calves. Glycoconj. J. 2003, 19, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Perdijk, O.; Van Baarlen, P.; Fernandez-Gutierrez, M.M.; Van den Brink, E.; Schuren, F.H.J.; Brugman, S.; Savelkoul, H.F.J.; Kleerebezem, M.; Van Neerven, R.J.J. Sialyllactose and Galactooligosaccharides Promote Epithelial Barrier Functioning and Distinctly Modulate Microbiota Composition and Short Chain Fatty Acid Production in Vitro. Front. Immunol. 2019, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Yuca, H. Capsicum annuum L. In Novel Drug Targets with Traditional Herbal Medicines: Scientific and Clinical Evidence; Gürağaç Dereli, F.T., Ilhan, M., Belwal, T., Eds.; Springer: Cham, Switzerland, 2022; pp. 95–108. [Google Scholar]
- Mountzouris, K.C.; Balaskas, C.; Fava, F.; Tuohy, K.M.; Gibson, G.R.; Fegeros, K. Profiling of Composition and Metabolic Activities of the Colonic Microflora of Growing Pigs Fed Diets Supplemented with Prebiotic Oligosaccharides. Anaerobe 2006, 12, 178–185. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Lager, I.; Looger, L.L.; Hilpert, M.; Lalonde, S.; Frommer, W.B. Conversion of a Putative Agrobacterium Sugar-Binding Protein into a FRET Sensor with High Selectivity for Sucrose. J. Biol. Chem. 2006, 281, 30875–30883. [Google Scholar] [CrossRef]
- Ibrahim, O.O. Functional Oligosaccharides: Chemicals Structure, Manufacturing, Health Benefits, Applications and Regulations. J. Food Chem. Nanotechnol. 2018, 4, 65–76. [Google Scholar] [CrossRef]
- Zhu, L.; Cao, X.; Chen, W.; Zhang, G.; Sun, D.; Wang, P.G. Syntheses and Biological Activities of Daunorubicin Analogs with Uncommon Sugars. Bioorganic Med. Chem. 2005, 13, 6381–6387. [Google Scholar] [CrossRef]
- Barile, D.; Tao, N.; Lebrilla, C.B.; Coisson, J.D.; Arlorio, M.; German, J.B. Permeate from Cheese Whey Ultrafiltration Is a Source of Milk Oligosaccharides. Int. Dairy J. 2009, 19, 524–530. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent Advances in Exploiting Goat’s Milk: Quality, Safety and Production Aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Robinson, R.C. Structures and Metabolic Properties of Bovine Milk Oligosaccharides and Their Potential in the Development of Novel Therapeutics. Front. Nutr. 2019, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Obelitz-Ryom, K.; Rendboe, A.K.; Nguyen, D.N.; Rudloff, S.; Brandt, A.B.; Nielsen, D.S.; Heckmann, A.B.; Chichlowski, M.; Sangild, P.T.; Thymann, T.; et al. Bovine Milk Oligosaccharides with Sialyllactose for Preterm Piglets. Nutrients 2018, 10, 1489. [Google Scholar] [CrossRef]
- Petschow, B.W.; Talbott, R.D. Response of Bifidobacterium Species to Growth Promoters in Human and Cow Milk. Pediatr. Res. 1991, 29, 208–213. [Google Scholar] [CrossRef]
- McJarrow, P.; Van Amelsfort-Schoonbeek, J. Bovine Sialyl Oligosaccharides: Seasonal Variations in Their Concentrations in Milk, and a Comparison of the Colostrums of Jersey and Friesian Cows. Int. Dairy J. 2004, 14, 571–579. [Google Scholar] [CrossRef]
- Liu, Z.; Auldist, M.; Wright, M.; Cocks, B.; Rochfort, S. Bovine Milk Oligosaccharide Contents Show Remarkable Seasonal Variation and Intercow Variation. J. Agric. Food Chem. 2017, 65, 1307–1313. [Google Scholar] [CrossRef]
- LoCascio, R.G.; Ninonuevo, M.R.; Freeman, S.L.; Sela, D.A.; Grimm, R.; Lebrilla, C.B.; Mills, D.A.; German, J.B. Glycoprofiling of Bifidobacterial Consumption of Human Milk Oligosaccharides Demonstrates Strain Specific, Preferential Consumption of Small Chain Glycans Secreted in Early Human Lactation. J. Agric. Food Chem. 2007, 55, 8914–8919. [Google Scholar] [CrossRef]
- Cowardin, C.A.; Ahern, P.P.; Kung, V.L.; Hibberd, M.C.; Cheng, J.; Guruge, J.L.; Sundaresan, V.; Head, R.D.; Barile, D.; Mills, D.A.; et al. Mechanisms by Which Sialylated Milk Oligosaccharides Impact Bone Biology in a Gnotobiotic Mouse Model of Infant Undernutrition. Proc. Natl. Acad. Sci. USA 2019, 116, 11988–11996. [Google Scholar] [CrossRef]
- Danishefsky, S.J.; Allen, J.R. From the Laboratory to the Clinic: A Retrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angew. Chem. Int. Ed. 2000, 39, 836–863. [Google Scholar] [CrossRef]
- Tao, N.; DePeters, E.J.; Freeman, S.; German, J.B.; Grimm, R.; Lebrilla, C.B. Bovine Milk Glycome. J. Dairy Sci. 2008, 91, 3768–3778. [Google Scholar] [CrossRef] [PubMed]
- Tao, N.; DePeters, E.J.; German, J.B.; Grimm, R.; Lebrilla, C.B. Variations in Bovine Milk Oligosaccharides during Early and Middle Lactation Stages Analyzed by High-Performance Liquid Chromatography-Chip/Mass Spectrometry. J. Dairy Sci. 2009, 92, 2991–3001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chauhan, D.D.A.P.; Deepak, D.; Chauhan, S. Cow Milk Oligosaccharides and Their Relevance to Infant Nutrition. Biol. Life Sci. Forum 2023, 29, 19. https://doi.org/10.3390/IECN2023-15973
Chauhan DDAP, Deepak D, Chauhan S. Cow Milk Oligosaccharides and Their Relevance to Infant Nutrition. Biology and Life Sciences Forum. 2023; 29(1):19. https://doi.org/10.3390/IECN2023-15973
Chicago/Turabian StyleChauhan, Desh Deepak A. P., Desh Deepak, and Sarita Chauhan. 2023. "Cow Milk Oligosaccharides and Their Relevance to Infant Nutrition" Biology and Life Sciences Forum 29, no. 1: 19. https://doi.org/10.3390/IECN2023-15973
APA StyleChauhan, D. D. A. P., Deepak, D., & Chauhan, S. (2023). Cow Milk Oligosaccharides and Their Relevance to Infant Nutrition. Biology and Life Sciences Forum, 29(1), 19. https://doi.org/10.3390/IECN2023-15973