Wheat Growth Parameters in Response to Irrigation Salinity in Wheat—Triticum aestivum L. †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments and Experimental Details
2.2. Water Preparation of Various Qualities
2.3. Test Crop
2.4. Soil Sample Collection
2.5. Determination of Soil Chemical Properties
2.5.1. Extraction of Soluble Salts in Saturation Paste Extract
2.5.2. Determination of Carbonate and Bicarbonate
2.5.3. Determination of Chloride
2.5.4. Determination of Sulphate by Turbidity Method
2.5.5. Determination of Calcium by Versenate Method
2.5.6. Determination of Magnesium by Versenate Method
2.5.7. Determination of Sodium and Potassium
2.5.8. Cation Exchange Capacity (CEC)
2.5.9. Exchangeable Sodium Percentage (ESP)
2.5.10. Estimation of Organic Carbon
3. Results and Discussion
3.1. Soil Chemical Properties
3.1.1. Electrical Conductivity
3.1.2. Soil pH
3.1.3. Exchangeable Sodium Percentage
3.1.4. Ionic Composition Analyses
3.1.5. Organic Carbon
3.1.6. Cation Exchange Capacity
3.2. Biometric Observation
Crop Yield of Wheat
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuong, D.M.; Kwon, S.-J.; Nguyen, B.V.; Chun, S.W.; Kim, J.K.; Park, S.U. Effect of salinity stress on phenylpropanoid genes expression and related gene expression in wheat sprout. Agronomy 2020, 10, 390. [Google Scholar] [CrossRef]
- Wei, C.; Jiao, Q.; Evgenios, A.; Liu, H.; Li, G.; Zhang, J.; Fahad, S.; Jiang, Y. Hormetic effects of zinc on growth and antioxidant defense system of wheat plants. Sci. Total Environ. 2022, 807, 150992. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Inanaga, S.; Inoue, M. Water-saving approaches for improving wheat production. J. Sci. Food Agric. 2005, 85, 1379–1388. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Rakaščan, N.; Dražić, G.; Živanović, L.; Ikanović, J.; Jovović, Z.; Lonèar, M.; Bojović, R.; Popović, V. Effect of genotypes and locations on wheat yield components. Agric. For. 2019, 65, 233–242. [Google Scholar] [CrossRef]
- Lark, T.J.; Schelly, I.H.; Gibbs, H.K. Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Abrol, I.P.; Saha, A.K.; Acharya, C.L. Effect of exchangeable sodium on some soil’s physical properties. J. Ind. Soc. Soil Sci. 1978, 26, 98–105. [Google Scholar]
- Yadav, J.S.P.; Girdhar, I.K. Effect of varying Mg/Ca ratio and electrolyte concentration in the irrigation water on the soil properties and growth of wheat. Plant Soil 1980, 56, 413–427. [Google Scholar] [CrossRef]
- Poonia, S.R.; Jhorar, L.R.; Nath, J.; Khanna, S.S.; Singh, A. Salt balance in soil profiles as affected by different combinations of canal and saline water irrigation. J. Res. Hisar 1984, 4, 266–270. [Google Scholar]
- Sandhu, B.S.; Khera, K.L.; Prihar, S.S.; Singh, B. Irrigation needs and yield of rice on a sandy-loam soil as affected by continuous and intermittent submergence. Indian J. Agric. Sci. 1980, 50, 492–496. [Google Scholar]
- Van-Schilfgaarde, J. Irrigation—A blessing or a curse. Agri. Water Manag. 1994, 25, 203–219. [Google Scholar] [CrossRef]
- Ould Ahmed, B.A.; Inoue, M.; Moritani, S. Effect of saline water irrigation and manure application on the available water content, soil salinity and growth of wheat. Agric.Water Manag. 2010, 97, 165–170. [Google Scholar] [CrossRef]
- Chaudhari, S.K.; Somawanshi, R.B. Unsaturated flow of different quality irrigation waters through clay, clay loam and silt loam soils and its dependence on soil and solution parameters. Agric. Water Manag. 2004, 64, 69–90. [Google Scholar] [CrossRef]
- Jalali, M.; Ranjbar, F. Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma 2010, 155, 101–106. [Google Scholar] [CrossRef]
Total Electrolyte Conc (me L−1) | Ca2+/Mg2+ and Cl−/SO42− Ratio of 2:1 | Ionic Composition at SAR 5.0 mmol1/2 L−1/2 | ||
---|---|---|---|---|
Cl− | SO42− | Total | ||
Saline Water 1 (50 me L−1) | Na+ | 13.01 | 6.506 | 19.519 |
Ca2+ | 20.32 | -- | 20.32 | |
Mg2+ | -- | 10.16 | 10.16 | |
Total | 33.33 | 16.67 | 50.00 | |
Saline Water 2 (100 me L−1) | Na+ | 19.77 | 9.88 | 29.65 |
Ca2+ | 46.90 | -- | 46.90 | |
Mg2+ | -- | 23.45 | 23.45 | |
Total | 66.67 | 33.33 | 100.00 |
Recommended Fertilizer Dose for Wheat (kg ha−1) | ||||
Nutrients | N | P2O5 | K2O | Zn2+ |
Total dose | 150 | 60 | 40 | 25 |
Basal | 75 | 60 | 40 | 25 |
Top dressing | 75 + 75 | -- | -- | -- |
Required Fertilizer Amount for Each Pot (g) | ||||
Total dose | 2.12 | 0.92 | 0.47 | 0.54 |
Basal | 1.06 | 0.92 | 0.47 | 0.54 |
Top dressing | 0.53 + 0.53 | -- | -- | -- |
Soil Type | Na+ | K+ | Ca2+ | Mg2+ | CO32− | HCO3− | Cl− | SO42− |
---|---|---|---|---|---|---|---|---|
Normal soil | 4.6 | 0.17 | 3.7 | 1.8 | 0.0 | 1.0 | 4.0 | 3.2 |
Soil Type | Ph | ECe (dS m−1) | CEC [c mol (p+) kg−1] | ESP% | OC% | CaCO3% |
---|---|---|---|---|---|---|
Normal soil | 7.5 | 1.01 | 13.2 | 4.2 | 0.50 | 0.3 |
Soil Type | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|
c mol (p+) kg−1 | ||||
Normal soil | 0.64 | 0.36 | 8.36 | 3.14 |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
0–15 | 1.0 | 1.2 | 7.8 | 11.5 |
15–30 | 1.1 | 6.6 | 9.7 | |
LSD0.05 0.5 and 0.4 for 0–15, 15–30 cm soil depths, respectively |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
0–15 | 7.5 | 7.8 | 7.3 | 7.2 |
15–30 | 7.9 | 7.5 | 7.4 | |
LSD0.05 0.1 and 0.1 for 0–15, 15–30 cm soil depths, respectively |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
0–15 | 4.2 | 8.0 | 9.5 | 8.6 |
15–30 | 7.5 | 8.2 | 7.4 | |
LSD0.05 2.4 and 1.2 for 0–15, 15–30 cm soil depths, respectively |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
Sodium (me L−1) | ||||
0–15 | 4.6 | 13.3 | 71.4 | 82.3 |
15–30 | 15.6 | 61.2 | 55.5 | |
LSD0.05 4.4 and 2.9 for 0–15, 15–30 cm soil depths, respectively | ||||
Potassium (me L−1) | ||||
0–15 | 0.2 | 0.15 | 0.31 | 0.45 |
15–30 | 0.13 | 0.18 | 0.36 | |
LSD0.05 0.0 and 0.0 for 0–15, 15–30 cm soil depths, respectively | ||||
Calcium (me L−1) | ||||
0–15 | 3.7 | 3.00 | 26.5 | 28.0 |
15–30 | 3.25 | 14.5 | 27.0 | |
LSD0.05 2.5 and 2.7 for 0–15, 15–30 cm soil depths, respectively | ||||
Magnesium (me L−1) | ||||
0–15 | 1.8 | 6.0 | 34.5 | 54.0 |
15–30 | 6.25 | 24.5 | 34.2 | |
LSD0.05 2.6 and 2.4 for 0–15, 15–30 cm soil depths, respectively | ||||
Carbonate (me L−1) | ||||
0–15 | 0.0 | 0.0 | 0.0 | 0.0 |
15–30 | 0.0 | 0.0 | 0.0 | |
LSD0.05 0.0 and 0.0 for 0–15, 15–30 cm soil depths, respectively | ||||
Bicarbonate (me L−1) | ||||
0–15 | 1.0 | 3.75 | 3.0 | 2.5 |
15–30 | 4.25 | 3.25 | 2.25 | |
LSD0.05 0.3 and 0.4 for 0–15, 15–30 cm soil depths, respectively | ||||
Chloride (me L−1) | ||||
0–15 | 4.0 | 7.5 | 71.0 | 102.0 |
15–30 | 6.0 | 47.0 | 63.0 | |
LSD0.05 6.4 and 7.2 for 0–15, 15–30 cm soil depths, respectively | ||||
Sulphate (me L−1) | ||||
0–15 | 3.2 | 10.5 | 45.5 | 55.9 |
15–30 | 12.2 | 41.3 | 40.5 | |
LSD0.05 6.9 and 5.4 for 0–15, 15–30 cm soil depths, respectively |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
0–15 | 0.50 | 0.60 | 0.55 | 0.55 |
15–30 | 0.45 | 0.49 | 0.46 | |
LSD0.05 0.0 and 0.0 for 0–15, 15–30 cm soil depths, respectively |
Depth (cm) | Initial Soil | TW | SW1 | SW2 |
---|---|---|---|---|
0–15 | 13.2 | 12.5 | 12.8 | 11.7 |
15–30 | 10.9 | 12.1 | 11.2 | |
LSD0.05 0.5 and 0.4 for 0–15, 15–30 cm soil depths, respectively |
Parameters (Average) | TW | SW1 | SW2 |
---|---|---|---|
Grain weight/pot (g) | 61.4 | 47.6 | 18.2 |
Straw weight/pot (g) | 119.5 | 113.3 | 36.3 |
1000 Grain weight (g) | 39.2 | 35.9 | 24.0 |
LSD0.05 4.6 and 10.6, respectively |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, B.; Arora, N.K.; Kumar, R.; Sharma, S.; Sharma, M. Wheat Growth Parameters in Response to Irrigation Salinity in Wheat—Triticum aestivum L. Biol. Life Sci. Forum 2023, 27, 57. https://doi.org/10.3390/IECAG2023-16319
Kumar B, Arora NK, Kumar R, Sharma S, Sharma M. Wheat Growth Parameters in Response to Irrigation Salinity in Wheat—Triticum aestivum L. Biology and Life Sciences Forum. 2023; 27(1):57. https://doi.org/10.3390/IECAG2023-16319
Chicago/Turabian StyleKumar, Brajesh, Naresh Kumar Arora, Raman Kumar, Sonu Sharma, and Monu Sharma. 2023. "Wheat Growth Parameters in Response to Irrigation Salinity in Wheat—Triticum aestivum L." Biology and Life Sciences Forum 27, no. 1: 57. https://doi.org/10.3390/IECAG2023-16319
APA StyleKumar, B., Arora, N. K., Kumar, R., Sharma, S., & Sharma, M. (2023). Wheat Growth Parameters in Response to Irrigation Salinity in Wheat—Triticum aestivum L. Biology and Life Sciences Forum, 27(1), 57. https://doi.org/10.3390/IECAG2023-16319