Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models Using Hyperspectral Proximal Sensors †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Sampling and Data Acquisition
2.2. Modelation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Cunha, M.; Richter, C. The impact of climate change on the winegrape vineyards of the Portuguese Douro region. Clim. Chang. 2016, 138, 239–251. [Google Scholar] [CrossRef]
- Tosin, R.; Pôças, I.; Novo, H.; Teixeira, J.; Fontes, N.; Graça, A.; Cunha, M. Assessing predawn leaf water potential based on hyperspectral data and pigment’s concentration of Vitis vinifera L. in the Douro Wine Region. Sci. Hortic. 2021, 278, 109860. [Google Scholar] [CrossRef]
- Martins, R.C.; Barroso, T.G.; Jorge, P.; Cunha, M.; Santos, F. Unscrambling spectral interference and matrix effects in Vitis vinifera Vis-NIR spectroscopy: Towards analytical grade ‘in vivo’ sugars and acids quantification. Comput. Electron. Agric. 2022, 194, 106710. [Google Scholar] [CrossRef]
- Kleinhenz, M.D.; Bumgarner, N.R. Using °Brix as an Indicator of Vegetable Quality: Linking Measured Values to Crop Management. In Linking Measured Values to Crop Management. Fact Sheet. Agriculture and Natural Resources; The Ohio State University: Columbus, OH, USA, 2013. [Google Scholar]
- Reid, M.; Kader, A. Postharvest Technology of Horticultural Crops; University of California Agriculture and Natural Resources: Davis, CA, USA, 2002. [Google Scholar]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Martins, R.C.; Magalhães, S.; Jorge, P.; Barroso, T.; Santos, F. Metbots: Metabolomics Robots for Precision Viticulture. In Progress in Artificial Intelligence, Proceedings of the 19th EPIA Conference on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, 3–6 September 2019; Springer: Cham, Switzerland, 2019; pp. 156–166. [Google Scholar]
- Tosin, R.; Martins, R.C.; Santos, F.; Cunha, M. Sensores proximais hiperespectrais e algoritmos computacionais para fenotipagem digital de parâmetros fisiológicos da videira. Rev. Assoc. Port. Hortic. 2022, 58, 24–26. [Google Scholar]
- Pôças, I.; Tosin, R.; Gonçalves, I.; Cunha, M. Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data. Agric. For. Meteorol. 2020, 280, 107793. [Google Scholar] [CrossRef]
- Chea, C.; Saengprachatanarug, K.; Posom, J.; Saikaew, K.; Wongphati, M.; Taira, E. Optimal models under multiple resource types for Brix content prediction in sugarcane fields using machine learning. Remote Sens. Appl. Soc. Environ. 2022, 26, 100718. [Google Scholar] [CrossRef]
- Lichtenthaler, H.; Buschmann, C. Chlorophylls and carotenoids: Measurements and characterization by UV-Vis spectroscopy. In Handbook of Food Analytical Chemistry; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D.M., Sporns, P., Eds.; Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 171–178. [Google Scholar]
- Middleton, E.M.; Huemmrich, K.F.; Zhang, Q.; Campbell, P.K.E.; Landis, D.R. Spectral Bioindicators of Photosynthetic Efficiency and Vegetation Stress. In Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2011; pp. 265–288. [Google Scholar]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanin Content in Grapevine Leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [Google Scholar] [CrossRef]
- Montesinos-López, O.; Montesinos, A.; Crossa, J. Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139. [Google Scholar]
- Gomes, V.M.; Fernandes, A.M.; Faia, A.; Melo-Pinto, P. Determination of sugar content in whole Port Wine grape berries combining hyperspectral imaging with neural networks methodologies. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), Orlando, FL, USA, 9–12 December 2014. [Google Scholar]
- Kalopesa, E.; Karyotis, K.; Tziolas, N.; Tsakiridis, N.; Samarinas, N.; Zalidis, G. Estimation of Sugar Content in Wine Grapes via In Situ VNIR– SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques. Sensors 2023, 23, 1065. [Google Scholar] [PubMed]
Models | Training Set | Validation Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE (°Brix) | MAPE (%) | R2 | RMSE (°Brix) | MAPE (%) | |
RF | 0.9895 | 0.3988 | 1.49 | 0.9312 | 0.9199 | 3.88 |
PCA+RF | 0.9427 | 0.9072 | 3.66 | 0.7134 | 1.8585 | 8.35 |
PCA+PLS | 0.6427 | 2.0696 | 0.08 | 0.6382 | 2.0414 | 0.09 |
PCA+GLM | 0.9991 | 0.1009 | 0.00 | 0.9990 | 0.1076 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Campos, M.; Tosin, R.; Rodrigues, L.; Gonçalves, I.; Barbosa, C.; Martins, R.; Santos, F.; Cunha, M. Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models Using Hyperspectral Proximal Sensors. Biol. Life Sci. Forum 2023, 27, 50. https://doi.org/10.3390/IECAG2023-15914
Santos-Campos M, Tosin R, Rodrigues L, Gonçalves I, Barbosa C, Martins R, Santos F, Cunha M. Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models Using Hyperspectral Proximal Sensors. Biology and Life Sciences Forum. 2023; 27(1):50. https://doi.org/10.3390/IECAG2023-15914
Chicago/Turabian StyleSantos-Campos, Maria, Renan Tosin, Leandro Rodrigues, Igor Gonçalves, Catarina Barbosa, Rui Martins, Filipe Santos, and Mário Cunha. 2023. "Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models Using Hyperspectral Proximal Sensors" Biology and Life Sciences Forum 27, no. 1: 50. https://doi.org/10.3390/IECAG2023-15914
APA StyleSantos-Campos, M., Tosin, R., Rodrigues, L., Gonçalves, I., Barbosa, C., Martins, R., Santos, F., & Cunha, M. (2023). Enhancing Grape Brix Prediction in Precision Viticulture: A Benchmarking Study of Predictive Models Using Hyperspectral Proximal Sensors. Biology and Life Sciences Forum, 27(1), 50. https://doi.org/10.3390/IECAG2023-15914