Grassland Crops as Drivers for the Improvement of Soil Fertility †
Abstract
:1. Introduction
2. Bibliographic Sources
3. The Influence of Grasslands on Soil Chemical Fertility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Gargano, G.; Licciardo, F.; Verrascina, M.; Zanetti, B. The Agroecological Approach as a Model for Multifunctional Agriculture and Farming towards the European Green Deal 2030—Some Evidence from the Italian Experience. Sustainability 2021, 13, 2215. [Google Scholar] [CrossRef]
- Ros, G.H.; Verweij, S.E.; Janssen, S.J.C.; De Haan, J.; Fujita, Y. An Open Soil Health Assessment Framework Facilitating Sustainable Soil Management. Environ. Sci. Technol. 2022, 56, 17375–17384. [Google Scholar] [CrossRef] [PubMed]
- Abbott, L.K.; Murphy, D.V. What Is Soil Biological Fertility? In Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–15. [Google Scholar]
- Larkin, R.P. Soil Health Paradigms and Implications for Disease Management. Annu. Rev. Phytopathol. 2015, 53, 199–221. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barrulas, P.; Pinto, A.P.; Brito, I.; Teixeira, D.M. Mycorrhizal Colonization of Wheat by Intact Extraradical Mycelium of Mn-Tolerant Native Plants Induces Different Biochemical Mechanisms of Protection. Plants 2023, 12, 2091. [Google Scholar] [CrossRef] [PubMed]
- Jha, C.K.; Saraf, M. Plant Growth Promoting Rhizobacteria (PGPR): A Review. J. Agric. Res. Dev. 2015, 5, 108–119. [Google Scholar]
- Pires, D.; Orlando, V.; Collett, R.L.; Moreira, D.; Costa, S.R.; Inácio, M.L. Linking Nematode Communities and Soil Health under Climate Change. Sustainability 2023, 15, 11747. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Pearson: Columbus, OH, USA, 2016; Volume 910. [Google Scholar]
- Rasool, R.; Kukal, S.S.; Hira, G.S. Soil Physical Fertility and Crop Performance as Affected by Long Term Application of FYM and Inorganic Fertilizers in Rice–Wheat System. Soil Tillage Res. 2007, 96, 64–72. [Google Scholar] [CrossRef]
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- Tamburini, G.; Aguilera, G.; Öckinger, E. Grasslands Enhance Ecosystem Service Multifunctionality above and Below-Ground in Agricultural Landscapes. J. Appl. Ecol. 2022, 59, 3061–3071. [Google Scholar] [CrossRef]
- Dondini, M.; Martin, M.; De Camillis, C.; Uwizeye, A.; Soussana, J.-F.; Robinson, T.; Steinfeld, H. Global Assessment of Soil Carbon in Grasslands. In From Current Stock Estimates to Sequestration Potential; FAO Animal Production and Health Paper, 187; FAO: Rome, Italy, 2023. [Google Scholar]
- Cantú Silva, I.; Yáñez Díaz, M.I. Effect of the Change of Land Use on the Contents of Soil Organic Carbon and Nitrogen. Rev. Mex. Cienc. For. 2018, 9, 122–151. [Google Scholar]
- Han, D.; Yu, P.; Zhu, X.; Sun, T.; Jia, H. Relationships between soil physiochemical properties and soil respiration under different land uses in an alpine grassland during freeze-thaw period. Fresenius Environ. Bull. 2018, 27, 7364–7373. [Google Scholar]
- Kharal, S.; Khanal, B.R.; Panday, D. Assessment of Soil Fertility under Different Land-Use Systems in Dhading District of Nepal. Soil Syst. 2018, 2, 57. [Google Scholar] [CrossRef]
- Rolando, J.L.; Dubeux, J.C.B.; Ramirez, D.A.; Ruiz-Moreno, M.; Turin, C.; Mares, V.; Sollenberger, L.E.; Quiroz, R. Land Use Effects on Soil Fertility and Nutrient Cycling in the Peruvian High-Andean Puna Grasslands. Soil Sci. Soc. Am. J. 2018, 82, 463–474. [Google Scholar] [CrossRef]
- Zhang, Q.; Shao, M. Soil Fertility Increases Rapidly during the 6-10 Yr Following Conversion of Cropland to Grassland in China’s Loess Plateau Region. Can. J. Soil Sci. 2018, 98, 531–541. [Google Scholar] [CrossRef]
- Hu, T.; Taghizadeh-Toosi, A.; Olesen, J.E.; Jensen, M.L.; Sørensen, P.; Christensen, B.T. Converting Temperate Long-Term Arable Land into Semi-Natural Grassland: Decadal-Scale Changes in Topsoil C, N, 13 C and 15 N Contents. Eur. J. Soil Sci. 2019, 70, 350–360. [Google Scholar] [CrossRef]
- Pantoja, J.C.M.; Campos, M.C.C.; de Lima, A.F.L.; da Cunha, J.M.; Simões, E.L.; de Oliveira, I.A.; Silva, L.S. Multivariate Analysis in the Evaluation of Soil Attributes in Areas under Different Uses in the Region of Humaitá, AM. Rev. Ambiente Água 2019, 14, 1–16. [Google Scholar] [CrossRef]
- Damene, S.; Bahir, A.; Villamor, G.B. The Role of Chomo Grass (Brachiaria humidicola) and Exclosures in Restoring Soil Organic Matter, Total Nitrogen, and Associated Functions in Degraded Lands in Ethiopia. Reg. Environ. Change 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Fernández, R.; Ezequiel Furch, N.; Bissolino, M.; Frasier, I.; Daniel Scherger, E.; Raul Quiroga, A. Effect of perennial pastures in physical and biological fertility in Mollisols of the semiarid Pampas region. Cienc. Del Suelo 2020, 38, 1–16. [Google Scholar]
- Jacobs, A.; Poeplau, C.; Weiser, C.; Fahrion-Nitschke, A.; Don, A. Exports and Inputs of Organic Carbon on Agricultural Soils in Germany. Nutr. Cycl. Agroecosyst. 2020, 118, 249–271. [Google Scholar] [CrossRef]
- Nyameasem, J.K.; Reinsch, T.; Taube, F.; Yaw Fosu Domozoro, C.; Marfo-Ahenkora, E.; Emadodin, I.; Malisch, C.S. Nitrogen Availability Determines the Long-Term Impact of Land Use Change on Soil Carbon Stocks in Grasslands of Southern Ghana. SOIL 2020, 6, 523–539. [Google Scholar] [CrossRef]
- Shatokhin, A.A.; Chamurliev, O.G.; Zelenev, A.V.; Chamurliev, G.O.; Vorontsova, E.S. Field Crop Rotations in Organic Agriculture of the Volgograd Region. BIO Web Conf. 2020, 27, 00152. [Google Scholar] [CrossRef]
- Bankó, L.; Tóth, G.; Marton, C.L.; Hoffmann, S. Hot-Water Extractable C and N as Indicators for 4p1000 Goals in a Temperate-Climate Long-Term Field Experiment: A Case Study from Hungary. Ecol. Indic. 2021, 126, 107364. [Google Scholar] [CrossRef]
- Saha, M.; Das, M.; Sarkar, A. Distinct Nature of Soil Organic Carbon Pools and Indices under Nineteen Years of Rice Based Crop Diversification Switched over from Uncultivated Land in Eastern Plateau Region of India. Soil Tillage Res. 2021, 207, 104856. [Google Scholar] [CrossRef]
- Müller, T.S.; Dechow, R.; Flessa, H. Inventory and Assessment of PH in Cropland and Grassland Soils in Germany. J. Plant Nutr. Soil Sci. 2022, 185, 145–158. [Google Scholar] [CrossRef]
- Waldrip, H.; Schwartz, R.C.; He, Z.; Todd, R.W.; Baumhardt, R.L.; Zhang, M.; Parker, D.; Brauer, D.; Min, B.R. Soil Water Extractable Organic Matter under Long-Term Dryland Cropping Systems on the Texas High Plains. Soil Sci. Soc. Am. J. 2022, 86, 1249–1263. [Google Scholar] [CrossRef]
- Buraka, T.; Elias, E.; Lelago, A. Effects of Land-Use-Cover-Changes on Selected Soil Physicochemical Properties along Slope Position, Coka Watershed, Southern Ethiopia. Heliyon 2023, 9, e16142. [Google Scholar] [CrossRef]
- Bargaz, A.; Elhaissoufi, W.; Khourchi, S.; Benmrid, B.; Borden, K.A.; Rchiad, Z. Benefits of Phosphate Solubilizing Bacteria on Belowground Crop Performance for Improved Crop Acquisition of Phosphorus. Microbiol. Res. 2021, 252, 126842. [Google Scholar] [CrossRef]
- Reis, V.M.; Teixeira, K.R. dos S. Nitrogen Fixing Bacteria in the Family Acetobacteraceae and Their Role in Agriculture. J. Basic Microbiol. 2015, 55, 931–949. [Google Scholar] [CrossRef]
- Villordon, A.Q.; Ginzberg, I.; Firon, N. Root Architecture and Root and Tuber Crop Productivity. Trends Plant Sci. 2014, 19, 419–425. [Google Scholar] [CrossRef]
- DuPont, S.T.; Beniston, J.; Glover, J.D.; Hodson, A.; Culman, S.W.; Lal, R.; Ferris, H. Root Traits and Soil Properties in Harvested Perennial Grassland, Annual Wheat, and Never-Tilled Annual Wheat. Plant Soil 2014, 381, 405–420. [Google Scholar] [CrossRef]
Grassland vs. Cropland | Soil Depth (cm) | Mean Differences of Soil Chemical Fertility Parameters (%) 1 | Ref. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOM | SOC | C/N | TN | TP | TK | AN | AP | AK | pH | |||
Bluestem (Dichanthium annulatum) vs. Sorghum (Sorghum bicolor) | 0–5 5–30 | +139 +50 | +18 +14 | +106 +36 | [14] | |||||||
Feather grass (Stipa purpurea) and Fescue (Festuca kryloviana) vs. Oat (Avena sativa) | 0–20 | +45 | +25 | −13 | +25 | +56 | +11 | +56 | −2 | [15] | ||
Grazing lands (sp. not referred) vs. Maize (Zea mays), Millet (Pennisetum glaucum), and Sesame (Sesamum indicum) | 0–20 | +107 | +134 | −1280 | −55 | −8 | [16] | |||||
Reed grass (Calamagrostis spp.), Fescue (Festuca spp.), Meadow grass (Poa spp.), and Feather grass (Stipa spp.) vs. Maca (Lepidium meyenii) | 0–30 | −11 | −2 | −7 | −35 | −52 | +2 | [17] | ||||
Feather grass (S. bungeana) and Alfalfa (Medicago sativa) vs. Foxtail millet (Setaria italica) and Soybean (Glycine max) | 0–10 10–20 | +59 +47 | +67 +34 | +23 +14 | [18] | |||||||
Perennial ryegrass (Lolium perenne) and Red fescue (F. rubra) vs. Crop rotation (sp. not referred) | 0–20 | +54 | [19] | |||||||||
Brachiaria (Brachiaria brizantha) vs. Cropland (sp. not referred) | 0–10 10–20 | −71 −79 | +16 −3 | +16 −88 | +4 −3 | [20] | ||||||
Chomo grass (B. humidicola) vs. Bare land (sp. not referred) 4 | 0–10 10–30 | +13 +11 | +16 +20 | +6 +6 | [21] | |||||||
Alfalfa (M. sativa) and Tall wheatgrass (Thinopyrum ponticum) vs. Soybean (G. max), Sunflower (Helianthus annuus), Rye (Secale cereale), and Triticale (x Triticosecale Wittmack) | 0–6 6–12 12–18 | +25 +3 +6 | [22] | |||||||||
Mown pasture (sp. not referred) vs. Potato (Solanum tuberosum) | 0–30 | +58 2 | [23] | |||||||||
Guinea grass (Megathyrsus maximus), Sedge (Cyperus spp.), Waterleaf (Talinum fruticosum), and Paspalum (Paspalum decumbens) vs. Cassava (Manihot esculenta), Peanut (Arachis hypogea), Maize (Z. mays), and Cowpea (Vigna unguiculata) | 0–30 | +6 | +2 | −107 | −2 | [24] | ||||||
Alfalfa (M. sativa), Sorghum (S. bicolor), Winter wheat (Triticum aestivum), Chickpea (Cicer arietinum), and Spring barley (Hordeum vulgare) vs. Winter wheat (T. aestivum), Chickpea (C. arietinum), and Spring barley (H. vulgare) | not referred | +60 | +64 3 | +62 | +76 | [25] | ||||||
Perennial ryegrass (L. perenne) and Clover (Trifolium spp.) vs. Potato (S. tuberosum), Maize (Z. mays), and Winter wheat (Triticum aestivum) | 0–30 | +45 | +43 | [26] | ||||||||
Grassland (sp. not referred) vs. Rice (Oryza sativa), Maize (Z. mays), and Okra (Abelmoschus esculentus) | 0–15 15–30 30–45 | +46 +42 +13 | [27] | |||||||||
Grassland (sp. not referred) vs. Cropland (sp. not referred) | 0–50 | −3 5 −22 | [28] | |||||||||
Blue grama (Bouteloua gracilis), Buffalo grass (B. dactyloides), and Little barley (H. pusillum) vs. Wheat (T. aestivum) | 0–8 8–15 16–23 23–30 | +67 +37 +37 +28 | +2 +6 −1 0 | [29] | ||||||||
Grassland (sp. not referred) vs. Cropland (sp. not referred) | 0–30 | +40 | +32 | −233 | +8 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaco, T.; Torres, M.O.; Faria, J.M.S. Grassland Crops as Drivers for the Improvement of Soil Fertility. Biol. Life Sci. Forum 2023, 27, 25. https://doi.org/10.3390/IECAG2023-14991
Cavaco T, Torres MO, Faria JMS. Grassland Crops as Drivers for the Improvement of Soil Fertility. Biology and Life Sciences Forum. 2023; 27(1):25. https://doi.org/10.3390/IECAG2023-14991
Chicago/Turabian StyleCavaco, Tomás, Maria Odete Torres, and Jorge M. S. Faria. 2023. "Grassland Crops as Drivers for the Improvement of Soil Fertility" Biology and Life Sciences Forum 27, no. 1: 25. https://doi.org/10.3390/IECAG2023-14991
APA StyleCavaco, T., Torres, M. O., & Faria, J. M. S. (2023). Grassland Crops as Drivers for the Improvement of Soil Fertility. Biology and Life Sciences Forum, 27(1), 25. https://doi.org/10.3390/IECAG2023-14991