Early Nitrogen Deficit Stress Detection in Maize (Zea mays) Seedlings Using Chlorophyll Fluorescence Technology †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Materials
2.3. Pot Establishment, Treatments, and Experimental Design
2.4. Data Collection
2.5. Measurement of Plant Height, Chlorophyll, and Photosynthesis Parameters
2.6. Statistical Analysis
3. Results
3.1. Effect of N-Stress on Plant Height, Leaf Color, and Chlorophyll Value
3.2. Effect of N-Stress on Photosynthetic Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bedeke, S.; Vanhove, W.; Gezahegn, M.; Natarajan, K.; Van Damme, P. Adoption of climate change adaptation strategies by maize-dependent smallholders in Ethiopia. NJAS-Wagening. J. Life Sci. 2019, 88, 96–104. [Google Scholar] [CrossRef]
- Gotosa, J.; Kodzwa, J.; Nyamangara, J.; Gwenzi, W. Effect of Nitrogen Fertiliser Application on Maize Yield Across Agro-Ecological Regions and Soil Types in Zimbabwe: A Meta-analysis Approach. Int. J. Plant Prod. 2019, 13, 251–266. [Google Scholar] [CrossRef]
- Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors that transformed maize productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [Google Scholar] [CrossRef]
- Adimassu, Z.; Kessler, A.; Stroosnijder, L. Farmers’ strategies to perceived trends of rainfall and crop productivity in the Central Rift Valley of Ethiopia. Environ. Dev. 2014, 11, 123–140. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Ekeleme, F.; Chikoye, D.; Omoigui, L.O. Planting date and cultivar effects on grain yield in dryland corn production. Agron. J. 2009, 101, 91–98. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adelekan, I.; Adler, C.; Adrian, R.; Okem, A. Technical Summary. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Pörtner, H.O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Rama, B., Eds.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Di Falco, S. Adaptation to climate change in sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. Eur. Rev. Agric. Econ. 2014, 41, 405–430. [Google Scholar] [CrossRef]
- Ngetich, F.K.; Diels, J.; Shisanya, C.A.; Mugwe, J.N.; Mucheru-Muna, M.; Mugendi, D.N. Effects of selected soil and water conservation techniques on runoff, sediment yield, and maize productivity under sub-humid and semi-arid conditions in Kenya. Catena 2014, 121, 288–296. [Google Scholar] [CrossRef]
- Mulwa, C.; Marenya, P.; Bahadur, D.; Kassie, M. Response to climate risks among smallholder farmers in Malawi: A multivariate probit assessment of the role of information, household demographics, and farm characteristics. Clim. Risk Manag. 2017, 16, 208–221. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Ajayi, O.C.; Sileshi, G.; Chirwa, P.W.; Chianu, J. Fertilizer trees for sustainable food security in the maize-based production systems of east and southern Africa: A review. Agron. Sustain. Dev. 2010, 30, 615–629. [Google Scholar] [CrossRef]
- Adamtey, N.; Musyoka, M.W.; Zundel, C.; Cobo, J.G.; Karanja, E.; Fiaboe, K.K.M.; Muriuki, A.; Mucheru-Muna, M.; Vanlauwe, B.; Berset, E.; et al. Productivity, profitability, and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 2016, 235, 61–79. [Google Scholar] [CrossRef]
- AU, NEPAD/NPCA. The Abuja Declaration on fertilizers for an African Green Revolution: Status of implementation at regional and national levels. Policy Brief, African Union and NEPAD Planning and Coordinating Agency. Addis Ababa Midrand. 2006. Available online: https://www.inter-reseaux.org/wp-content/uploads/Seventh_Progress_Report_Abuja_Declaration_FINAL_June_2011.pdf (accessed on 20 August 2023).
- Wen, B.; Li, C.; Fu, X.; Li, D.; Li, L.; Chen, X.; Wu, H.; Cui, X.; Zhang, X.; Shen, H.; et al. Effects of nitrate deficiency on nitrate assimilation and chlorophyll synthesis of detached apple leaves. Plant Physiol. Biochem. 2019, 142, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R.; Rosenqvist, E. Applications of Chlorophyll Fluorescence Can Improve Crop Production Strategies: An Examination of Future Possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Genty, B.; Harbinson, J.; Cailly, A.L.; Rizza, F. Fate of excitation at PS II in leaves: The non-photochemical side. In Proceedings of the Third BBSRC Robert Hill Symposium of Photosynthesis, University of Sheffield, Department of Molecular Biology and Biotechnology, Western Bank, Sheffield, UK, 31 March–3 April 1996. Abstract P28. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995. [Google Scholar]
- Meng, L.; Fan, Z.; Zhang, Q.; Wang, C.; Gao, Y.; Deng, Y.; Fu, D.Q. Bel1-like homeodomain 11 regulates chloroplast development and chlorophyll synthesis in tomato fruit. Plant J. 2018, 94, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukwu, U.N.; Agbo, J.U.; Ukwu, I.A. Early Nitrogen Deficit Stress Detection in Maize (Zea mays) Seedlings Using Chlorophyll Fluorescence Technology. Biol. Life Sci. Forum 2023, 27, 12. https://doi.org/10.3390/IECAG2023-15803
Ukwu UN, Agbo JU, Ukwu IA. Early Nitrogen Deficit Stress Detection in Maize (Zea mays) Seedlings Using Chlorophyll Fluorescence Technology. Biology and Life Sciences Forum. 2023; 27(1):12. https://doi.org/10.3390/IECAG2023-15803
Chicago/Turabian StyleUkwu, Uchenna Noble, Joy Udoka Agbo, and Ifeyinwa Albright Ukwu. 2023. "Early Nitrogen Deficit Stress Detection in Maize (Zea mays) Seedlings Using Chlorophyll Fluorescence Technology" Biology and Life Sciences Forum 27, no. 1: 12. https://doi.org/10.3390/IECAG2023-15803
APA StyleUkwu, U. N., Agbo, J. U., & Ukwu, I. A. (2023). Early Nitrogen Deficit Stress Detection in Maize (Zea mays) Seedlings Using Chlorophyll Fluorescence Technology. Biology and Life Sciences Forum, 27(1), 12. https://doi.org/10.3390/IECAG2023-15803