Effects of a Functional Product Derived from Beet Molasses Vinasse on Blood Pressure and Endothelial Function in Hypertensive Rats †
Abstract
:1. Introduction
2. Material and Methods
2.1. Functional Product Obtained from Beet Molasses Vinasse (V)
2.2. HPLC-MS Analysis of Polar Bioactive Compounds
2.3. Animals, Experimental Groups, and General Procedures
2.4. Blood Pressure Measurement
2.5. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis
2.6. Western Blot Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Polar Bioactive Compounds in V Functional Product
3.2. Systolic Blood Pressure Levels in SHR during the 5-Week V Supplementation
3.3. Gene and Protein Expression of Transcription Factors and Enzymes Implicated in Endothelial Dysfunction and the Antioxidant and Anti-Inflammatory Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Cheng, C.K.; Yi, M.; Lui, K.O.; Huang, Y. Targeting Endothelial Dysfunction and Inflammation. J. Mol. Cell Cardiol. 2022, 168, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef] [PubMed]
- Casper, E. The Crosstalk between Nrf2 and NF-NF-ΚB Pathways in Coronary Artery Disease: Can It Be Regulated by SIRT6? SSRN J. 2022, 330, 122007. [Google Scholar] [CrossRef]
- Yamagata, K.; Yamori, Y. Inhibition of Endothelial Dysfunction by Dietary Flavonoids and Preventive Effects against Cardiovascular Disease. J. Cardiovasc. Pharmacol. 2019, 75, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Valli, V.; Gómez-Caravaca, A.M.; Di Nunzio, M.; Danesi, F.; Caboni, M.F.; Bordoni, A. Sugar Cane and Sugar Beet Molasses, Antioxidant-Rich Alternatives to Refined Sugar. J. Agric. Food Chem. 2012, 60, 12508–12515. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Meng, H.; Zhao, Y.; Chen, F.; Yu, S. Antioxidant and In Vitro Anticancer Activities of Phenolics Isolated from Sugar Beet Molasses. BMC Complement. Altern. Med. 2015, 15, 313. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, G.; Cavia-Saiz, M.; Rivero-Pérez, M.D.; González-SanJosé, M.L.; Muñiz, P. Wine Pomace Product Modulates Oxidative Stress and Microbiota in Obesity High-Fat Diet-Fed Rats. J. Funct. Foods 2020, 68, 103903. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.L.; Soliz-Rueda, J.R.; Suárez, M.; Mulero, M.; Arola, L.; Bravo, F.I.; Muguerza, B. Study, Effect of Dealcoholization and Possible Mechanisms. Nutrients 2021, 13, 1142. [Google Scholar] [CrossRef] [PubMed]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The Role of Oxidative Stress, Antioxidants and Vascular Inflammation in Cardiovascular Disease (a Review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Chen, Y.; Huang, R.; Zhao, Z. Identification and Structure–Activity Relationship of Recovered Phenolics with Antioxidant and Antihyperglycemic Potential from Sugarcane Molasses Vinasse. Foods 2022, 11, 3131. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A. Anti-Hypertensive Effect of Cereal Antioxidant Ferulic Acid and Its Mechanism of Action. Front. Nutr. 2019, 6, 121. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, J.; Yao, S.; Zheng, J.; Gong, X.; Xiao, B. Ferulic Acid Alleviates Alveolar Epithelial Barrier Dysfunction in Sepsis-Induced Acute Lung Injury by Activating the Nrf2/HO-1 Pathway and Inhibiting Ferroptosis. Pharm. Biol. 2022, 60, 2286–2294. [Google Scholar] [CrossRef] [PubMed]
RT (min) | m/z | Error [ppm] | Molecular Formula | Proposed Compound | Description | Standard Used for Quantification | Concentration (mg/L) |
---|---|---|---|---|---|---|---|
3.16 | 290.0881 | 0.1 | C11H17NO8 | 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid | sialic acid amino acidic der. | 2-Deoxy-2,3-dehydro-N-acetylneuraminic acid | 179 ± 12 |
5.50 | 331.069 | −6.1 | C13H16O10 | 6-O-Galoylglucose | Gallic acid glycosylated der. | Gallic acid | 441 ± 16 |
8.13 | 461.131 | −1.2 | C19H26O13 | Saccharumoside isomer C o D | Phenolic acid glycosylated der. | - | NQ |
8.63 | 297.112 | 4.4 | C18H18O4 | Enterolactone | Lignan | - | NQ |
9.46 | 163.040 | −1.5 | C9H8O3 | p-Coumaric acid | Hydroxycinnamic acid | p-Coumaric | 62.7 ± 5.6 |
10.37 | 417.106 | −3.9 | C17H22O12 | Citrifolin B epimer A | iridoid terpene | - | NQ |
12.68 | 349.059 | −8.3 | C16H14O9 | Ethyldigallate isomer 1 or 2 | Ester of two gallic acids | Gallic acid | 275 ± 22 |
12.84 | 349.059 | −5.1 | C16H14O9 | Ethyldigallate isomer 1 or 2 | Ester of two gallic acids | Gallic acid | 274 ± 12 |
13.76 | 563.143 | −4.8 | C26H28O14 | Schaftoside | Flavonoid glycosylated der. | Schaftoside | 13.5 ± 0.7 |
16.14 | 253.082 | 18.3 | C17H16O3 | Phenethyl coumarate | Coumaric acid phenethyl ester | - | NQ |
19.13 | 312.124 | 1.3 | C18H19NO4 | N-t-Feruloyltyramine | Ferulic acid der. | Ferulic acid | 118 ± 2 |
19.58 | 342.135 | −1.3 | C19H21NO5 | N-t-Feruloyl-methyldopamine | Ferulic acid der. | Ferulic acid | 845 ± 92 |
22.20 | 327.2178 | −0.2 | C18H32O5 | Trihydroxyoctadecadienoic acid/Auxenetriolic acid | Fatty acid/Auxin der. | - | NQ |
23.39 | 329.2348 | −4.4 | C18H34O5 | Trihydroxyoctadecenoic acid/Auxenetriolic acid | Fatty acid/Fatty acid hydroxylated | - | NQ |
25.05 | 221.1182 | 0.3 | C13H18O3 | Hexyl hydroxybenzoate | Hydroxybenzoic acid der. | - | NQ |
Sum of individual polar bioactive compounds identified | 2208 ± 163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerardi, G.; Cavia-Saiz, M.; Muñiz, P.; López-Gámez, G.; López-Bascón, M.A.; Del Pino-García, R. Effects of a Functional Product Derived from Beet Molasses Vinasse on Blood Pressure and Endothelial Function in Hypertensive Rats. Biol. Life Sci. Forum 2023, 26, 29. https://doi.org/10.3390/Foods2023-15018
Gerardi G, Cavia-Saiz M, Muñiz P, López-Gámez G, López-Bascón MA, Del Pino-García R. Effects of a Functional Product Derived from Beet Molasses Vinasse on Blood Pressure and Endothelial Function in Hypertensive Rats. Biology and Life Sciences Forum. 2023; 26(1):29. https://doi.org/10.3390/Foods2023-15018
Chicago/Turabian StyleGerardi, Gisela, Mónica Cavia-Saiz, Pilar Muñiz, Gloria López-Gámez, María Asunción López-Bascón, and Raquel Del Pino-García. 2023. "Effects of a Functional Product Derived from Beet Molasses Vinasse on Blood Pressure and Endothelial Function in Hypertensive Rats" Biology and Life Sciences Forum 26, no. 1: 29. https://doi.org/10.3390/Foods2023-15018
APA StyleGerardi, G., Cavia-Saiz, M., Muñiz, P., López-Gámez, G., López-Bascón, M. A., & Del Pino-García, R. (2023). Effects of a Functional Product Derived from Beet Molasses Vinasse on Blood Pressure and Endothelial Function in Hypertensive Rats. Biology and Life Sciences Forum, 26(1), 29. https://doi.org/10.3390/Foods2023-15018