Functional Foods or Over-Hyped? Observations on the Antioxidant and Phenolic Content of Australian Foodstuffs †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Processing
2.3. Measurement of Vitamin C Content
2.4. Measurement of Phytochemical Composition
2.5. Measurement of Protein Content
2.6. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Contents of Different Foodstuffs
3.2. Correlation between Different Analytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pompella, A.; Sies, H.; Wacker, R.; Brouns, F.; Grune, T.; Biesalski, H.K.; Frank, J. The use of total antioxidant capacity as surrogate marker for food quality and its effect on health is to be discouraged. Nutrition 2014, 30, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078. [Google Scholar] [CrossRef] [PubMed]
- Zujko, M.E.; Waśkiewicz, A.; Witkowska, A.M.; Cicha-Mikołajczyk, A.; Zujko, K.; Drygas, W. Dietary Total Antioxidant Capacity—A New Indicator of Healthy Diet Quality in Cardiovascular Diseases: A Polish Cross-Sectional Study. Nutrients 2022, 14, 3219. [Google Scholar] [CrossRef] [PubMed]
- Mani, J.S.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2020, 268, 113580. [Google Scholar] [CrossRef] [PubMed]
- Abshirini, M.; Siassi, F.; Koohdani, F.; Qorbani, M.; Mozaffari, H.; Aslani, Z.; Soleymani, M.; Entezarian, M.; Sotoudeh, G. Dietary total antioxidant capacity is inversely associated with depression, anxiety and some oxidative stress biomarkers in postmenopausal women: A cross-sectional study. Ann. Gen. Psychiatry 2019, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Waśkiewicz, A.; Zujko, M.E.; Szcześniewska, D.; Pająk, A.; Stepaniak, U.; Drygas, W. Dietary Polyphenol Intake, but Not the Dietary Total Antioxidant Capacity, Is Inversely Related to Cardiovascular Disease in Postmenopausal Polish Women: Results of WOBASZ and WOBASZ II Studies. Oxidative Med. Cell. Longev. 2017, 2017, 5982809. [Google Scholar] [CrossRef]
- da Silva, A.; Caldas, A.P.S.; Pinto, S.L.; Hermsdorff, H.H.M.; Marcadenti, A.; Bersch-Ferreira, Â.C.; Torreglosa, C.R.; Weber, B.; Bressan, J. Dietary total antioxidant capacity is inversely associated with cardiovascular events and cardiometabolic risk factors: A cross-sectional study. Nutrition 2021, 89, 111140. [Google Scholar] [CrossRef] [PubMed]
- Wahlqvist, M.L. Antioxidant relevance to human health. Asia Pac. J. Clin. Nutr. 2013, 22, 171–176. [Google Scholar] [PubMed]
- Johnson, J.B.; Budd, C.; Mani, J.S.; Brown, P.; Walsh, K.B.; Naiker, M. Carotenoids, ascorbic acid and total phenolic content in the root tissue from five Australian-grown sweet potato cultivars. N. Z. J. Crop Hortic. Sci. 2021, 50, 32–47. [Google Scholar] [CrossRef]
- Johnson, J.; Collins, T.; Power, A.; Chandra, S.; Portman, D.; Blanchard, C.; Naiker, M. Antioxidative properties and macrochemical composition of five commercial mungbean varieties in Australia. Legume Sci. 2020, 2, e27. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting Nitrogen into Protein—Beyond 6.25 and Jones’ Factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.2.3; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Johnson, J.; Collins, T.; Skylas, D.; Quail, K.; Blanchard, C.; Naiker, M. Profiling the varietal antioxidative content and macrochemical composition in Australian faba beans (Vicia faba L.). Legume Sci. 2020, 2, e28. [Google Scholar] [CrossRef]
- George, J.; Edwards, D.; Pun, S.; Williams, D. Evaluation of Antioxidant Capacity (ABTS and CUPRAC) and Total Phenolic Content (Folin-Ciocalteu) Assays of Selected Fruit, Vegetables, and Spices. Int. J. Food Sci. 2022, 2022, 2581470. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed]
Category | Subcategory | No. Samples |
---|---|---|
Foodstuffs | Edible leaves | 2 |
Fruit | 18 | |
Grain | 519 | |
Native food (non-fruit) | 19 | |
Native fruit | 18 | |
Nuts | 36 | |
Processed foodstuff | 5 | |
Spice | 271 | |
Vegetable | 10 | |
Animal foodstuffs | Animal supplement | 5 |
Livestock fodder | 298 | |
Medicinal plants | Medicinal plant (non-Australian) | 14 |
Medicinal supplement (plant-based) | 2 | |
Native medicinal plant | 60 | |
Other samples (non-edible) | By-product (of food) | 52 |
Native plant | 29 | |
Root | 34 |
Category | Subcategory | TPC (mg GAE/100 g) | FRAP (mg TE/100 g) | CUPRAC (mg TE/100 g) | TMAC (mg C3G/100 g) | Moisture (%) | Protein (%) | ABTS (mg TE/100 g) | Vitamin C (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|
Foodstuffs | Edible leaves | 2666 ^ | 2471 ± 1054 | 10,470 ± 3706 | 60 ^ | - | 19 ^ | - | - |
Fruit | 268 ± 534 | 414 ± 914 | 1659 ± 2379 | 22 ± 78 | 80 ± 23 | 8 ^ | 617 ± 659 | 99 ± 63 | |
Grain | 251 ± 299 | 182 ± 258 | 720 ± 837 | 9 ± 7 | 10 ± 2 | 24 ± 5 | - | - | |
Native food (non-fruit) | 858 ± 594 | 711 ± 582 | 4573 ± 1070 | 28 ± 33 | 58 ± 14 | - | - | 54 ± 24 | |
Native fruit | 8486 ± 6205 | 17,735 ± 18,745 | 76,412 ± 42,402 | 29 ± 55 | 65 ± 25 | - | 6008 ± 7993 | 290 ± 178 | |
Nuts | 139 ± 18 | 89 ± 16 | 138 ± 18 | - | - | 27 ± 2 | - | - | |
Processed foodstuff | 548 ± 552 | 2093 ± 1446 | 2914 ± 2231 | 124 ± 176 | - | - | - | 7 ± 1 | |
Spice | 1362 ± 620 | 896 ± 1231 | 3070 ± 2454 | 14 ± 9 | 49 ± 40 | - | - | - | |
Vegetable | 304 ± 102 | 213 ± 178 | 3129 ± 1840 | 2 ± 4 | 82 ± 11 | 4 ^ | 1837 ± 1708 | 55 ± 49 | |
Animal foodstuffs | Animal supplement | 1385 ± 1124 | 448 ± 194 | 2980 ± 2015 | - | - | - | - | - |
Livestock fodder | 1022 ± 562 | 754 ± 387 | 2931 ± 1695 | 19 ± 13 | 10 ^ | 20 ± 6 | - | - | |
Medicinal plants | Medicinal plant (non-Australian) | 3846 ± 2841 | 4686 ± 5998 | 10,553 ± 10,183 | 5 ± 11 | - | - | - | - |
Medicinal supplement (plant-based) | 6025 ± 1719 | 6284 ^ | 7153 ± 3277 | - | - | - | - | - | |
Native medicinal plant | 2493 ± 1667 | 4776 ± 4764 | 17,501 ± 18,279 | - | 50 ± 16 | - | - | - | |
Other samples (non-edible) | By-product (of food) | 811 ± 1263 | 1083 ± 1917 | 10,281 ± 5801 | 9 ± 14 | - | 13 ± 2 | 1290 ± 541 | 296 ± 335 |
Native plant | 1501 ± 1035 | 2569 ± 4169 | 12,498 ± 13,529 | 6 ± 8 | 31 ± 11 | - | - | 54 ± 74 | |
Root | 390 ± 119 | 467 ± 175 | 390 ± 119 | - | - | 7 ± 1 | - | - |
Analyte | TPC | FRAP | CUPRAC | TMAC | Moisture | Protein | ABTS | Vitamin C |
---|---|---|---|---|---|---|---|---|
TPC | - | 0.845 *** (n = 1304) | 0.900 *** (n = 1094) | 0.275 *** (n = 528) | 0.327 *** (n = 671) | −0.013 NS (n = 706) | 0.096 NS (n = 6) | 0.783 *** (n = 78) |
FRAP | - | - | 0.848 *** (n = 1097) | 0.309 *** (n = 536) | 0.167 *** (n = 620) | −0.046 NS (n = 706) | 0.909 *** (n = 16) | 0.744 *** (n = 84) |
CUPRAC | - | - | - | 0.413 *** (n = 325) | 0.168 *** (n = 443) | 0.123 ** (n = 538) | 0.978 *** (n = 22) | 0.698 *** (n = 76) |
TMAC | - | - | - | - | 0.094 NS (n = 365) | −0.083 NS (n = 251) | 0.917 *** (n = 20) | 0.015 NS (n = 41) |
Moisture | - | - | - | - | - | −0.356 *** (n = 215) | −0.083 NS (n = 22) | 0.279 ** (n = 91) |
Protein | - | - | - | - | - | - | ND | ND |
ABTS | - | - | - | - | - | - | - | 0.185 NS (n = 21) |
Vitamin C | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.B.; Mani, J.S.; Batley, R.J.; Hoyos, B.E.; Novello, N.; Thani, P.R.; Arachchige, C.P.E.; Neupane, P.; Naiker, M. Functional Foods or Over-Hyped? Observations on the Antioxidant and Phenolic Content of Australian Foodstuffs. Biol. Life Sci. Forum 2023, 26, 17. https://doi.org/10.3390/Foods2023-15085
Johnson JB, Mani JS, Batley RJ, Hoyos BE, Novello N, Thani PR, Arachchige CPE, Neupane P, Naiker M. Functional Foods or Over-Hyped? Observations on the Antioxidant and Phenolic Content of Australian Foodstuffs. Biology and Life Sciences Forum. 2023; 26(1):17. https://doi.org/10.3390/Foods2023-15085
Chicago/Turabian StyleJohnson, Joel B., Janice S. Mani, Ryan J. Batley, Beatriz E. Hoyos, Nicola Novello, Parbat Raj Thani, Charitha Priyadarshani Ekanayake Arachchige, Pasmita Neupane, and Mani Naiker. 2023. "Functional Foods or Over-Hyped? Observations on the Antioxidant and Phenolic Content of Australian Foodstuffs" Biology and Life Sciences Forum 26, no. 1: 17. https://doi.org/10.3390/Foods2023-15085
APA StyleJohnson, J. B., Mani, J. S., Batley, R. J., Hoyos, B. E., Novello, N., Thani, P. R., Arachchige, C. P. E., Neupane, P., & Naiker, M. (2023). Functional Foods or Over-Hyped? Observations on the Antioxidant and Phenolic Content of Australian Foodstuffs. Biology and Life Sciences Forum, 26(1), 17. https://doi.org/10.3390/Foods2023-15085