Exploring the Bioactive Potential of Gracilaria gracilis: An Extraction Optimization Study Using Response Surface Methodology †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algae Preparation
2.2. Extraction Process
2.3. Total Phenolic Compounds (TPC) Analysis
2.4. Experimental Design
3. Results
3.1. Results Obtained from Experimental Design: Box-Behnken Design
3.2. Results Obtained from Experimental Design: Central Composite Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raven, J.A.; Giordano, M. Algae. Curr. Biol. 2014, 24, R590–R595. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N.; Kim, S.-K. Nutritional and Digestive Health Benefits of Seaweed. Adv. Food Nutr. Res. 2011, 64, 17–28. [Google Scholar] [PubMed]
- Quitério, E.; Soares, C.; Ferraz, R.; Delerue-Matos, C.; Grosso, C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021, 10, 3100. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Siahaan, E.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16, 399. [Google Scholar] [CrossRef] [PubMed]
- Zehiroglu, C.; Ozturk Sarikaya, S.B. The Importance of Antioxidants and Place in Today’s Scientific and Technological Studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef] [PubMed]
- Reboleira, J.; Ganhão, R.; Mendes, S.; Adão, P.; Andrade, M.; Vilarinho, F.; Sanches-Silva, A.; Sousa, D.; Mateus, A.; Bernardino, S. Optimization of Extraction Conditions for Gracilaria Gracilis Extracts and Their Antioxidative Stability as Part of Microfiber Food Coating Additives. Molecules 2020, 25, 4060. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, M.; Franchi, M.; Monteleone, M.; Caroppo, C. The Red Seaweed Gracilaria Gracilis as a Multi Products Source. Mar. Drugs 2013, 11, 3754–3776. [Google Scholar] [CrossRef] [PubMed]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drugs 2022, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Tirado-Kulieva, V.A.; Sánchez-Chero, M.; Yarlequé, M.V.; Villegas Aguilar, G.F.; Carrión-Barco, G.; Ygnacio Santa Cruz, A.G.; Sánchez-Chero, J. An Overview on the Use of Response Surface Methodology to Model and Optimize Extraction Processes in the Food Industry. Curr. Res. Nutr. Food Sci. J. 2021, 9, 745–754. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bayuo, J.; Abukari, M.A.; Pelig-Ba, K.B. Optimization Using Central Composite Design (CCD) of Response Surface Methodology (RSM) for Biosorption of Hexavalent Chromium from Aqueous Media. Appl. Water Sci. 2020, 10, 135. [Google Scholar] [CrossRef]
- Ait-Amir, B.; Pougnet, P.; El Hami, A. Meta-Model Development. In Embedded Mechatronic Systems 2: Analysis of Failures, Modeling, Simulation and Optimization; ISTE: Washington, DC, USA, 2020; pp. 157–187. ISBN 9781785481901. [Google Scholar]
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 5.45 | 4 | 1.36 | 43.57 | <0.0001 | significant |
A | 0.0216 | 1 | 0.0216 | 0.6918 | 0.4218 | |
B | 5.14 | 1 | 5.14 | 164.25 | <0.0001 | |
AB | 0.2233 | 1 | 0.2233 | 7.14 | 0.0203 | |
B2 | 0.0687 | 1 | 0.0687 | 2.20 | 0.1640 | |
Residual | 0.3752 | 12 | 0.0313 | |||
Lack of Fit | 0.3002 | 8 | 0.0375 | 2.00 | 0.2625 | not significant |
Pure Error | 0.0750 | 4 | 0.0187 | |||
Cor Total | 5.82 | 16 |
Std. Dev. | 0.1768 | R2 | 0.9356 |
---|---|---|---|
Mean | 2.43 | Adjusted R2 | 0.9141 |
C.V. % | 7.29 | Predicted R2 | 0.8326 |
Adeq Precision | 21.6373 |
Number | Temperature | Ratio | Time | TPC | Desirability | |
---|---|---|---|---|---|---|
1 | 74.993 | 74.684 | 3.507 | 3.335 | 1.000 | |
2 | 74.354 | 74.855 | 1.425 | 3.336 | 1.000 | Selected |
3 | 74.142 | 74.979 | 2.851 | 3.338 | 1.000 | |
4 | 74.803 | 74.881 | 3.954 | 3.340 | 1.000 | |
5 | 74.516 | 74.876 | 1.563 | 3.338 | 1.000 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 8.73 | 7 | 1.25 | 17.14 | <0.0001 | significant |
A | 0.5080 | 1 | 0.5080 | 6.98 | 0.0215 | |
B | 4.52 | 1 | 4.52 | 62.11 | <0.0001 | |
AB | 0.0017 | 1 | 0.0017 | 0.0227 | 0.8827 | |
A2 | 0.0204 | 1 | 0.0204 | 0.2796 | 0.6066 | |
B2 | 0.1342 | 1 | 0.1342 | 1.84 | 0.1996 | |
A2B | 1.26 | 1 | 1.26 | 17.35 | 0.0013 | |
AB2 | 0.9287 | 1 | 0.9287 | 12.76 | 0.0038 | |
Residual | 0.8734 | 12 | 0.0728 | |||
Lack of Fit | 0.7576 | 7 | 0.1082 | 4.67 | 0.0544 | not significant |
Pure Error | 0.1158 | 5 | 0.0232 | |||
Cor Total | 9.61 | 19 |
Std. Dev. | 0.2698 | R2 | 0.9091 |
---|---|---|---|
Mean | 2.61 | Adjusted R2 | 0.8560 |
C.V. % | 10.32 | Predicted R2 | 0.6269 |
Adeq Precision | 17.6231 |
Number | Temperature | Ratio | Time | TPC | Desirability | |
---|---|---|---|---|---|---|
1 | 46.496 | 75.000 | 1.408 | 4.278 | 0.963 | |
2 | 46.497 | 75.000 | 3.388 | 4.278 | 0.963 | |
3 | 46.470 | 75.000 | 1.875 | 4.278 | 0.963 | |
4 | 46.474 | 75.000 | 1.120 | 4.278 | 0.963 | Selected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, C.; Morais, S.; Vale, T.; Soares, C.; Grosso, C.; Domingues, V.F.; Vieira, M.; Delerue-Matos, C. Exploring the Bioactive Potential of Gracilaria gracilis: An Extraction Optimization Study Using Response Surface Methodology. Biol. Life Sci. Forum 2023, 26, 13. https://doi.org/10.3390/Foods2023-15026
Neves C, Morais S, Vale T, Soares C, Grosso C, Domingues VF, Vieira M, Delerue-Matos C. Exploring the Bioactive Potential of Gracilaria gracilis: An Extraction Optimization Study Using Response Surface Methodology. Biology and Life Sciences Forum. 2023; 26(1):13. https://doi.org/10.3390/Foods2023-15026
Chicago/Turabian StyleNeves, Cátia, Stephanie Morais, Tiago Vale, Cristina Soares, Clara Grosso, Valentina F. Domingues, Mónica Vieira, and Cristina Delerue-Matos. 2023. "Exploring the Bioactive Potential of Gracilaria gracilis: An Extraction Optimization Study Using Response Surface Methodology" Biology and Life Sciences Forum 26, no. 1: 13. https://doi.org/10.3390/Foods2023-15026
APA StyleNeves, C., Morais, S., Vale, T., Soares, C., Grosso, C., Domingues, V. F., Vieira, M., & Delerue-Matos, C. (2023). Exploring the Bioactive Potential of Gracilaria gracilis: An Extraction Optimization Study Using Response Surface Methodology. Biology and Life Sciences Forum, 26(1), 13. https://doi.org/10.3390/Foods2023-15026