Study of the Antihypertensive Peptides Derived from Alpha-Lactalbumin Hydrolysate after Simulation of Digestion †
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Analysis
2.1.1. α-Lactalbumin (α-La) Hydrolysate Obtaining with Alcalase Enzyme
2.1.2. In Vitro Digestion of α-La-Hydrolysate
2.1.3. Fractionation into Peptides by Preparative RP-HPLC Chromatography
2.1.4. Identification and Synthesis of Peptides
2.1.5. In Vitro Antihypertensive Activity of Peptides
2.2. In Silico Analysis
2.2.1. Physicochemical Properties of Peptides
2.2.2. Global Predictors
2.2.3. Structures and Related Properties
3. Results and Discussion
3.1. In Vitro Analysis
3.2. In Silico Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Martínez, C.; Dávila-Ortiz, G.; Sánchez-Mendoza, N.A. Péptidos con actividad antioxidante provenientes de fuentes animales y vegetales. Prop. Func. Hoy 2017, 117–142. [Google Scholar] [CrossRef]
- Koch, W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [PubMed]
- Milla, K.J.; Valle, R.M. El estado nutricional y su relación con la actividad física, el nivel socioeconómico y el rendimiento académico. Rev. Cienc. Tecnol. 2018, 37–57. [Google Scholar] [CrossRef]
- González, R.; Cardentey, J. Behavior of non-communicable chronic diseases in older adults. Rev. Enferm. No Transm. Finlay 2018, 8, 103–110. [Google Scholar]
- Fernández-Fernández, A.M.; Dumay, E.; López-Pedemonte, T.; Medrano-Fernandez, A. Bioaccessibility and cell metabolic activity studies of antioxidant low molecular weight peptides obtained by ultrafiltration of α-lactalbumin enzymatic hydrolysates. Food Nutr. Sci. 2018, 9, 1047–1065. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Dávalos, A.; Bartolomé, B.; Amigo, L. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulln. Identification of active peptides by HPLC-MS/MS. J. Agric. Food Chem. 2005, 53, 588–593. [Google Scholar] [CrossRef]
- Benakmoum, A.; Abbeddou, S.; Ammouche, A.; Kefalas, P.; Gerasopoulos, D. Valorisation of low quality edible oil with tomato peel waste. Food Chem. 2008, 110, 684–690. [Google Scholar] [CrossRef]
- Medrano, A.; Abirached, C.; Panizzolo, L.; Moyna, P.; Añón, M.C. The effect of glycation on foam and structural properties of β-lactoglobulin. Food Chem. 2009, 113, 127–133. [Google Scholar] [CrossRef]
- Medrano, A.; Abirached, C.; Moyna, P.; Panizzolo, L.; Añón, M.C. The effect of glycation on oil-water emulsion properties of β-lactoglobulin. LWT-Food Sci. Technol. 2012, 45, 253–260. [Google Scholar] [CrossRef]
- Sariçay, Y.; Kelly, P.M.; Arranz, E.; Corrochano, A.R.; Buckin, V.; Giblin, L. Comparison of antioxidant activities of bovine whey proteins before and after simulated gastrointestinal digestion. J. Dairy Sci. 2018, 102, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, W.; Monteiro, K.M.; Martínez-Maqueda, D.; Ramos, M.; Recio, I.; Carvalho, J.E. De Antiulcerative Activity of Milk Proteins Hydrolysates. J. Med. Food 2018, 21, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, A.M.; López-Pedemonte, T.; Medrano-Fernandez, A. Evaluation of Antioxidant, Antiglycant and ACE-Inhibitory Activity in Enzymatic Hydrolysates of α-Lactalbumin. Food Nutr. Sci. 2017, 8, 84–98. [Google Scholar] [CrossRef]
- Georgoulia, P.S.; Glykos, N.M. Molecular simulation of peptides coming of age: Accurate prediction of folding, dynamics and structures. Arch. Biochem. Biophys. 2019, 664, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Báez, J.; Fernández-Fernández, A.M.; Tironi, V.; Bollati-Fogolín, M.; Añón, M.C.; Medrano-Fernández, A. Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α-lactalbumin hydrolysate. J. Food Sci. 2021, 86, 4479–4490. [Google Scholar] [CrossRef] [PubMed]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yoon, S.; Yu, D.Y.; Lönnerdal, B.; Chung, B.H. Novel angiotensin-I-converting enzyme inhibitory peptides derived from recombinant human α(s1)-casein expressed in Escherichia coli. J. Dairy Res. 1999, 66, 431–439. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Heuman, D.M.; Sanyal, A.J.; Hylemon, P.B.; Sterling, R.K.; Stravitz, R.T.; Fuchs, M.; Ridlon, J.M.; Daita, K.; Monteith, P.; et al. Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy. PLoS ONE 2013, 8, e60042. [Google Scholar] [CrossRef]
- Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem. 2018, 256, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, J.; Wang, J.; Heffernan, R.; Hanson, J.; Paliwal, K.; Zhou, Y. Sixty-five years of the long march in protein secondary structure prediction: The final stretch? Brief. Bioinform. 2018, 19, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Vermeirssen, V.; Van Der Bent, A.; Van Camp, J.; Van Amerongen, A.; Verstraete, W. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Biochimie 2004, 86, 231–239. [Google Scholar] [CrossRef] [PubMed]
Peptide | Sequence | Nº of Amino Acids | Isoelectric Point | Charge at pH = 7.4 | Weight (Da) | GRAVY |
---|---|---|---|---|---|---|
1 | IWCKDDQNPH | 10 | 4.94 | −1.4 | 1254.370 | −1.66 |
2 | KFLDDDLTDDIM | 12 | 3.39 | −4 | 1436.558 | −0.44 |
3 | DKFLDDDLTDDIM | 13 | 3.3 | −5 | 1550.638 | −0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, A.; Báez, J.; Fernández-Fernández, A.M.; Nardo, A.; Añón, M.C.; Medrano, A.; Paulino, M. Study of the Antihypertensive Peptides Derived from Alpha-Lactalbumin Hydrolysate after Simulation of Digestion. Biol. Life Sci. Forum 2022, 18, 63. https://doi.org/10.3390/Foods2022-12972
Alba A, Báez J, Fernández-Fernández AM, Nardo A, Añón MC, Medrano A, Paulino M. Study of the Antihypertensive Peptides Derived from Alpha-Lactalbumin Hydrolysate after Simulation of Digestion. Biology and Life Sciences Forum. 2022; 18(1):63. https://doi.org/10.3390/Foods2022-12972
Chicago/Turabian StyleAlba, Antonella, Jessica Báez, Adriana Maite Fernández-Fernández, Agustina Nardo, María Cristina Añón, Alejandra Medrano, and Margot Paulino. 2022. "Study of the Antihypertensive Peptides Derived from Alpha-Lactalbumin Hydrolysate after Simulation of Digestion" Biology and Life Sciences Forum 18, no. 1: 63. https://doi.org/10.3390/Foods2022-12972
APA StyleAlba, A., Báez, J., Fernández-Fernández, A. M., Nardo, A., Añón, M. C., Medrano, A., & Paulino, M. (2022). Study of the Antihypertensive Peptides Derived from Alpha-Lactalbumin Hydrolysate after Simulation of Digestion. Biology and Life Sciences Forum, 18(1), 63. https://doi.org/10.3390/Foods2022-12972