The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Treatments and Experimental Design
2.2. Plant Sampling and Analyzed Parameters
2.3. Statistical Analysis
3. Results
Plant Biomass and Growth Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P.; Bayat, H. Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy 2019, 9, 522. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in horticulture. Sci. Hortic. 2015, 196, 1–2. [Google Scholar] [CrossRef]
- Petropoulos, S.A. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- du Jardin, P. The Science of Plant Biostimulants—A Bibliographic Analysis, Ad Hoc Study Report; European Commission: Luxembourg, 2012; pp. 27–30. [Google Scholar]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Kenny, O.; O’Beirne, D. The effects of washing treatment on antioxidant retention in ready-to-use iceberg lettuce. Int. J. Food Sci. Technol. 2009, 44, 1146–1156. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Jiashu, C. Effects of silicon on earliness and photosynthetic characteristics of melon. Acta Hort. Sin. 2001, 28, 421–424. [Google Scholar]
- Liang, Y.; Chen, Q.; Liu, Q.; Zhang, W.; Ding, R. Exogenous Silicon Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation in Roots of Salt-Stressed Barley (Hordeum vulgare L.). J. Plant Physiol. 2003, 160, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; El-Nakhel, C.; Leone, V.; Mori, M. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop Sci. 2020, 14, 1456–1464. [Google Scholar] [CrossRef]
- Luziatelli, F.; Ficca, A.G.; Colla, G.; Svecova, E.; Ruzzi, M. Effects of a protein hydrolysate-based biostimulant and two micronutrient based fertilizers on plant growth and epiphytic bacterial population of lettuce. Acta Hortic. 2016, 1148, 43–48. [Google Scholar] [CrossRef]
- Hernandez, O.L.; Calderín, A.; Huelva, R.; Martínez-Balmori, D.; Guridi, F.; Aguiar, N.O.; Olivares, F.L.; Canellas, L.P. Humic substances from vermicompost enhance urban lettuce production. Agron. Sustain. Dev. 2014, 35, 225–232. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Asgharipour, M.R.; Mosapour, H. A foliar application silicon enhances drought tolerance in fennel. J. Anim. Plant Sci. 2016, 26, 1056–1062. [Google Scholar]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Kopta, T.; Pavlíková, M.; Sȩkara, A.; Pokluda, R.; Maršálek, B. Effect of bacterial-algal biostimulant on the yield and internal quality of Lettuce (Lactuca sativa L.) produced for spring and summer crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 615–621. [Google Scholar] [CrossRef]
- Bulgari, R.; Trivellini, A.; Ferrante, A. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Front. Plant Sci. 2019, 9, 1870. [Google Scholar] [CrossRef] [PubMed]
Biostimulants | Irrigation | Plant Height (cm) | SPAD Index |
---|---|---|---|
NB | Control | 28.7 ± 3.1 Aab | 26.7 ± 1.5 Ab |
IR.1 | 28.3 ± 3.7 Aab | 28.1 ± 2.1 Aab | |
IR.2 | 26.9 ± 3.1 Bbc | 19.5 ± 1.6 Bc | |
SiC | Control | 29.3 ± 1.3 Aab | 31.3 ± 1.2 Aab |
IR.1 | 24.0 ± 2.2 Bc | 28.9 ± 1.5 Bab | |
IR.2 | 24.4 ± 2.5 Bc | 20.5 ± 1.5 Cc | |
HF | Control | 28.8 ± 2.1 Aab | 31.2 ± 1.8 Aab |
IR.1 | 28.1 ± 2.6 Aab | 25.4 ± 1.0 Bb | |
IR.2 | 26.0 ± 2.8 Bbc | 24.6 ± 1.0 Bb | |
SW | Control | 27.7 ± 3.0 Abc | 27.3 ± 1.2 Bab |
IR.1 | 26.8 ± 2.4 ABbc | 33.3 ± 1.2 Aa | |
IR.2 | 25.2 ± 2.7 Bc | 19.0 ± 1.0 Cc | |
Si | Control | 24.7 ± 1.4 Bc | 29.5 ± 1.5 Aab |
IR.1 | 30.1 ± 3.1 Aa | 29.9 ± 1.0 Aab | |
IR.2 | 24.9 ± 2.5 Bc | 19.7 ± 1.3 Bc | |
VP | Control | 27.6 ± 2.9 Abc | 31.9 ± 1.8 Aab |
IR.1 | 28.1 ± 2.2 Aab | 26.5 ± 1.3 Bb | |
IR.2 | 25.7 ± 1.9 Bbc | 14.9 ± 2.0 Cd |
Biostimulants | Irrigation Treatment | Plant Weight (g) | Number of Leaves | Weight of Leaves (g) | LAI (cm2) | Dry Weight (%) | SLA |
---|---|---|---|---|---|---|---|
NB | Control | 402.7 ± 12.0 Bde | 36 ± 1 Bh | 298.5 ± 7.1 Be | 5905.4 ± 173.6 Bd | 8.3 ± 3.9 Aa | 26.8 ± 1.2 Cik |
IR.1 | 437.4 ± 10.6 Aab | 42 ± 1.4 Acd | 362.4 ± 6.9 Aab | 6647.6 ± 108.3 Ab | 5.0 ± 0.3 Bg | 36.6 ± 1.5 Bc | |
IR.2 | 363.1 ± 18.3 Cf | 36.8 ± 1.6 Bgh | 284.8 ± 5.9 Bef | 5209.1 ± 134.9 Cfg | 3.8 ± 0.8 Ck | 51.1 ± 1.6 Aa | |
SiC | Control | 429.1 ± 12.8 Abc | 43.6 ± 1.3 Bbc | 346.6 ± 18.5 Ac | 5997.0 ± 129.7 Ad | 7.4 ± 0.7 Ab | 23.9 ± 2.6 Cl |
IR.1 | 312.9 ± 11.0 Cik | 44 ± 1.8 Aab | 257.8 ± 13.9 Chi | 4630.9 ± 198.6 Bi | 6.9 ± 0.6 Bc | 27.8 ± 2.9 Bhi | |
IR.2 | 348.1 ± 8.1 Bgh | 36.2 ± 1.3 Ch | 280.4 ± 14.7 Bfg | 4808.8 ± 109.0 Bh | 5.6 ± 0.5 Cf | 32.1 ± 1.9 Ade | |
HF | Control | 392.1 ± 10.4 Be | 45.4 ± 1.6 Aab | 322.5 ± 9.2 Bd | 6375.5 ± 120.8 Ac | 6.6 ± 0.6 Ad | 31.0 ± 1.0 Bef |
IR.1 | 438.9 ± 14.2 Aab | 37.6 ± 1.0 Cfg | 355.5 ± 12.4 Abc | 6472.7 ± 193.1 Ac | 6.2 ± 0.4 Be | 30.0 ± 1.6 Bf | |
IR.2 | 311.5 ± 8.4 Cik | 42 ± 1.8 Bcd | 253.0 ± 8.7 Chi | 4813.7 ± 163.3 Bh | 5.5 ± 0.5 Cf | 35.3 ± 2.0 Ac | |
SW | Control | 323.6 ± 18.8 Chi | 41.2 ± 2.2 Ade | 260.4 ± 12.9 Bhi | 5176.5 ± 198.0 Bg | 6.9 ± 1.4 Ac | 29.5 ± 1.2 Bfg |
IR.1 | 460.5 ± 10.4 Aa | 42.6 ± 1.9 Ac | 379.3 ± 8.0 Aa | 6928.8 ± 147.6 Aa | 6.4 ± 0.7 Bd | 28.8 ± 1.9 Bgh | |
IR.2 | 440.1 ± 14.4 Bab | 37.2 ± 1.6 Bfg | 362.8 ± 7.5 Aab | 6718.7 ± 146.3 Aab | 4.2 ± 0.5 Ci | 44.5 ± 1.9 Ab | |
Si | Control | 325.4 ± 11.2 Chi | 43.2 ± 1.8 Bbc | 267.5 ± 6.4 Bgh | 5392.1 ± 118.0 Bf | 8.1 ± 1.7 Aa | 25.8 ± 1.9 Ck |
IR.1 | 451.2 ± 12.8 Aa | 46.8 ± 1.0 Aa | 357.3 ± 7.3 Abc | 6542.8 ± 109.4 Abc | 6.2 ± 0.7 Be | 30.3 ± 1.8 Bf | |
IR.2 | 361.3 ± 11.8 Bfg | 40.4 ± 1.9 Ce | 283.4 ± 5.2 Bef | 5167.4 ± 124.9 Bg | 5.6 ± 0.7 Cf | 33.1 ± 1.7 Ad | |
VP | Control | 417.9 ± 19.1 Acd | 41.2 ± 1.6 Ade | 324.9 ± 6.7 Ad | 5679.3 ± 109.1 Ae | 4.5 ± 1.7 Ch | 46.8 ± 2.0 Ab |
IR.1 | 381.3 ± 13.8 Bef | 39.6 ± 1.4 Be | 297.3 ± 9.9 Be | 5125.4 ± 152.7 Bg | 6.9 ± 0.4 Ac | 25.4 ± 1.5 Ck | |
IR.2 | 302.7 ± 14.2 Ck | 37.4 ± 1.10 Cfg | 245.6 ± 1.0 Ci | 4495.3 ± 105.8 Ck | 5.2 ± 0.6 Bg | 36.1 ± 1.4 Bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaski, C.; Petropoulos, S.A. The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions. Biol. Life Sci. Forum 2022, 16, 4. https://doi.org/10.3390/IECHo2022-12499
Chaski C, Petropoulos SA. The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions. Biology and Life Sciences Forum. 2022; 16(1):4. https://doi.org/10.3390/IECHo2022-12499
Chicago/Turabian StyleChaski, Christina, and Spyridon A. Petropoulos. 2022. "The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions" Biology and Life Sciences Forum 16, no. 1: 4. https://doi.org/10.3390/IECHo2022-12499
APA StyleChaski, C., & Petropoulos, S. A. (2022). The Effects of Biostimulant Application on Growth Parameters of Lettuce Plants Grown under Deficit Irrigation Conditions. Biology and Life Sciences Forum, 16(1), 4. https://doi.org/10.3390/IECHo2022-12499