Distinguishing Pickled and Fresh Cucumber Slices Using Digital Image Processing and Machine Learning †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashrostaghi, T.; Aliniaeifard, S.; Shomali, A.; Azizinia, S.; Abbasi Koohpalekani, J.; Moosavi-Nezhad, M.; Gruda, N.S. Light Intensity: The Role Player in Cucumber Response to Cold Stress. Agronomy 2022, 12, 201. [Google Scholar] [CrossRef]
- Sallam, B.N.; Lu, T.; Yu, H.; Li, Q.; Sarfraz, Z.; Iqbal, M.S.; Khan, S.; Wang, H.; Liu, P.; Jiang, W. Productivity Enhancement of Cucumber (Cucumis sativus L.) through Optimized Use of Poultry Manure and Mineral Fertilizers under Greenhouse Cultivation. Horticulturae 2021, 7, 256. [Google Scholar] [CrossRef]
- Mostafa, Y.S.; Hashem, M.; Alshehri, A.M.; Alamri, S.; Eid, E.M.; Ziedan, E.-S.H.; Alrumman, S.A. Effective Management of Cucumber Powdery Mildew with Essential Oils. Agriculture 2021, 11, 1177. [Google Scholar] [CrossRef]
- Obel, H.O.; Cheng, C.; Tian, Z.; Li, J.; Lou, Q.; Yu, X.; Wang, Y.; Ogweno, J.O.; Chen, J. Molecular Research Progress on Xishuangbanna Cucumber (Cucumis sativus L. var. Xishuangbannesis Qi et Yuan): Current Status and Future Prospects. Agronomy 2022, 12, 300. [Google Scholar] [CrossRef]
- Kersten, A.-K.; Scharf, S.; Bandte, M.; Martin, P.; Meurer, P.; Lentzsch, P.; Büttner, C. Softening of Processed Plant Virus Infected Cucumis sativus L. Fruits. Agronomy 2021, 11, 1451. [Google Scholar] [CrossRef]
- Moore, J.F.; DuVivier, R.; Johanningsmeier, S.D. Changes in the free amino acid profile of pickling cucumber during lactic acid fermentation. J. Food Sci. 2022, 87, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Dupas de Matos, A.; Marangon, M.; Magli, M.; Cianciabella, M.; Predieri, S.; Curioni, A.; Vincenzia, S. Sensory characterization of cucumbers pickled with verjuice as novel acidifying agent. Food Chem. 2019, 286, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.F.; DuVivier, R.A.; Johanningsmeier, S.D. Formation of γ-aminobutyric acid (GABA) during the natural lactic acid fermentation of cucumber. J. Food Compos. Anal. 2021, 96, 103711. [Google Scholar] [CrossRef]
- Bhargava, A.; Bansal, A. Fruits and vegetables quality evaluation using computer vision: A review. J. King Saud Univ.-Comput. Inf. Sci. 2021, 33, 243–257. [Google Scholar] [CrossRef]
- Dubey, S.R.; Jalal, A.S. Application of Image Processing in Fruit and Vegetable Analysis: A Review. J. Intell. Syst. 2015, 24, 405–424. [Google Scholar] [CrossRef]
- Zenoozian, M.S.; Feng, H.; Razavi, S.M.A.; Shahidi, F.; Pourreza, H.R. Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. J. Food Process. Preserv. 2008, 32, 88–102. [Google Scholar] [CrossRef]
- Hernández-Carrión, M.; Hernando, I.; Sotelo-Díaz, I.; Quintanilla-Carvajal, M.X.; Quiles, A. Use of image analysis to evaluate the effect of high hydrostatic pressure and pasteurization as preservation treatments on the microstructure of red sweet pepper. Innov. Food Sci. Emerg. Technol. 2015, 27, 69–78. [Google Scholar] [CrossRef]
- Feng, X.M.; Olsson, J.; Swanberg, M.; Schnürer, J.; Rönnow, D. Image analysis for monitoring the barley tempeh fermentation process. J. Appl. Microbiol. 2007, 103, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Verdú, S.; Barat, J.M.; Grau, R. Non destructive monitoring of the yoghurt fermentation phase by an image analysis of laser-diffraction patterns: Characterization of cow’s, goat’s and sheep’s milk. Food Chem. 2019, 274, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Ariana, D.P.; Lu, R. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Comput. Electron. Agric. 2010, 74, 137–144. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J. Food Eng. 2010, 96, 583–590. [Google Scholar] [CrossRef]
- Ropelewska, E.; Wrzodak, A. The Use of Image Analysis and Sensory Analysis for the Evaluation of Cultivar Differentiation of Freeze-Dried and Lacto-Fermented Beetroot (Beta vulgaris L.). Food Anal. Methods 2022, 15, 1026–1041. [Google Scholar] [CrossRef]
- Ropelewska, E.; Wrzodak, A.; Sabanci, K.; Aslan, M.F. Effect of lacto-fermentation and freeze-drying on the quality of beetroot evaluated using machine vision and sensory analysis. Eur. Food Res. Technol. 2022, 248, 153–161. [Google Scholar] [CrossRef]
Algorithm | Class | F1-Score | Precision | Recall | Overall Accuracy (%) |
---|---|---|---|---|---|
Naive Bayes | pickled cucumber | 0.990 | 0.980 | 1.000 | 99 |
fresh cucumber | 0.990 | 1.000 | 0.980 | ||
Multilayer Perceptron | pickled cucumber | 1.000 | 1.000 | 1.000 | 100 |
fresh cucumber | 1.000 | 1.000 | 1.000 | ||
KStar | pickled cucumber | 0.995 | 1.000 | 0.990 | 99.5 |
fresh cucumber | 0.995 | 0.990 | 1.000 | ||
LMT | pickled cucumber | 0.995 | 0.990 | 1.000 | 99.5 |
fresh cucumber | 0.995 | 1.000 | 0.990 | ||
Logit Boost | pickled cucumber | 0.990 | 0.990 | 0.990 | 99 |
fresh cucumber | 0.990 | 0.990 | 0.990 | ||
PART | pickled cucumber | 0.985 | 0.990 | 0.980 | 98.5 |
fresh cucumber | 0.985 | 0.980 | 0.990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Sabanci, K.; Aslan, M.F. Distinguishing Pickled and Fresh Cucumber Slices Using Digital Image Processing and Machine Learning. Biol. Life Sci. Forum 2022, 16, 1. https://doi.org/10.3390/IECHo2022-12477
Ropelewska E, Sabanci K, Aslan MF. Distinguishing Pickled and Fresh Cucumber Slices Using Digital Image Processing and Machine Learning. Biology and Life Sciences Forum. 2022; 16(1):1. https://doi.org/10.3390/IECHo2022-12477
Chicago/Turabian StyleRopelewska, Ewa, Kadir Sabanci, and Muhammet Fatih Aslan. 2022. "Distinguishing Pickled and Fresh Cucumber Slices Using Digital Image Processing and Machine Learning" Biology and Life Sciences Forum 16, no. 1: 1. https://doi.org/10.3390/IECHo2022-12477
APA StyleRopelewska, E., Sabanci, K., & Aslan, M. F. (2022). Distinguishing Pickled and Fresh Cucumber Slices Using Digital Image Processing and Machine Learning. Biology and Life Sciences Forum, 16(1), 1. https://doi.org/10.3390/IECHo2022-12477