Evaluation of the Effect of Postharvest Lacto-Fermentation on Radish Using Innovative Discriminative Models Based on Textures of Images †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Image Processing
2.3. Discrimination of Lacto-Fermented and Fresh Radish Samples
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhao, X.; Ma, Y.; Zhang, L.; Jiang, Y.; Liang, H.; Wang, D. Transcriptome and metabolome profiling to elucidate mechanisms underlying the blue discoloration of radish roots during storage. Food Chem. 2021, 362, 130076. [Google Scholar] [CrossRef]
- Yousaf, M.; Bashir, S.; Raza, H.; Shah, A.N.; Iqbal, J.; Arif, M.; Bukhari, M.A.; Muhammad, S.; Hashim, S.; Alkahtani, J.; et al. Role of nitrogen and magnesium for growth, yield and nutritional quality of radish. Saudi J. Biol. Sci. 2021, 28, 3021–3030. [Google Scholar] [CrossRef]
- Gamba, M.; Asllanaj, E.; Raguindin, P.F.; Glisic, M.; Franco, O.H.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H.; Muka, T. Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends Food Sci. Technol. 2021, 113, 205–218. [Google Scholar] [CrossRef]
- Rao, Y.; Tao, Y.; Chen, X.; She, X.; Qian, Y.; Li, Y.; Du, Y.; Xiang, W.; Li, H.; Liu, L. The characteristics and correlation of the microbial communities and flavors in traditionally pickled radishes. LWT 2020, 118, 108804. [Google Scholar] [CrossRef]
- Malisorn, C.; Suntornsuk, W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour. Technol. 2008, 99, 2281–2287. [Google Scholar] [CrossRef]
- Jiang, J.; Shi, B.; Zhu, D.; Cai, Q.; Chen, Y.; Li, J.; Qi, K.; Zhang, M. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control 2012, 23, 338–344. [Google Scholar] [CrossRef]
- Andersen, J.O.; Henriksen, C.B.; Laursen, J.; Nielsen, A.A. Computerised image analysis of biocrystallograms originating from agricultural products. Comput. Electron. Agric. 1999, 22, 51–69. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Tab, F.A.; Kalaj, Y.R.; Mohtasebi, S.S.; Zude, M. Analysis of texture-based features for predicting mechanical properties of horticultural products by laser light backscattering imaging. Comput. Electron. Agric. 2013, 98, 34–45. [Google Scholar] [CrossRef]
- Hossain, E.; Hossain, M.F.; Rahaman, M.A. A color and texture based approach for the detection and classification of plant leaf disease using KNN classifier. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019; pp. 1–6. [Google Scholar]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Opara, U.L. Machine learning applications to non-destructive defect detection in horticultural products. Biosyst. Eng. 2020, 189, 60–83. [Google Scholar] [CrossRef]
- Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On Plant Detection of Intact Tomato Fruits Using Image Analysis and Machine Learning Methods. Sensors 2014, 14, 12191–12206. [Google Scholar] [CrossRef]
- Piedad, E., Jr.; Larada, J.I.; Pojas, G.J.; Ferrer, L.V.V. Postharvest classification of banana (Musa acuminata) using tier-based machine learning. Postharvest Biol. Technol. 2018, 145, 93–100. [Google Scholar] [CrossRef]
- Szczypinski, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Meth. Prog. Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Ibraheem, N.A.; Hasan, M.M.; Khan, R.Z.; Mishra, P.K. Understanding Color Models: A Review. ARPN J. Sci. Technol. 2012, 2, 265–275. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. In Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Witten, I.H.; Frank, E. Data mining. In Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005. [Google Scholar]
- Ropelewska, E.; Cai, X.; Zhang, Z.; Sabanci, K.; Aslan, M.F. Benchmarking Machine Learning Approaches to Evaluate the Cultivar Differentiation of Plum (Prunus domestica L.) Kernels. Agriculture 2022, 12, 285. [Google Scholar] [CrossRef]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture 2021, 11, 1212. [Google Scholar] [CrossRef]
- Ropelewska, E. Diversity of plum stones based on image texture parameters and machine learning algorithms. Agronomy 2022, 12, 762. [Google Scholar] [CrossRef]
- Ropelewska, E.; Wrzodak, A. The Use of Image Analysis and Sensory Analysis for the Evaluation of Cultivar Differentiation of Freeze-Dried and Lacto-Fermented Beetroot (Beta vulgaris L.). Food Anal. Methods 2021, 15, 1026–1041. [Google Scholar] [CrossRef]
- Ropelewska, E.; Wrzodak, A.; Sabanci, K.; Aslan, M.F. Effect of lacto-fermentation and freeze-drying on the quality of beetroot evaluated using machine vision and sensory analysis. Eur. Food Res. Technol. 2022, 248, 153–161. [Google Scholar] [CrossRef]
- Ariana, D.P.; Lu, R. Hyperspectral waveband selection for internal defect detection of pickling cucumbers and whole pickles. Comput. Electron. Agric. 2010, 74, 137–144. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F.; Durdu, A. A Novel Convolutional-Recurrent Hybrid Network for Sunn Pest–Damaged Wheat Grain Detection. Food Anal. Methods 2022, 15, 1748–1760. [Google Scholar] [CrossRef]
Classifier | Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|
Each of the color channels: B, b, Z, and U | |||||||
Logistic | Fresh radish | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Fermented radish | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||
Multi-Class Classifier | Fresh radish | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Fermented radish | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||
Color channel R | |||||||
Logistic | Fresh radish | 92.7 | 0.920 | 0.932 | 0.926 | 0.938 | 0.877 |
Fermented radish | 0.933 | 0.921 | 0.927 | 0.942 | 0.946 | ||
Multi-Class Classifier | Fresh radish | 92.7 | 0.920 | 0.932 | 0.926 | 0.938 | 0.877 |
Fermented radish | 0.933 | 0.921 | 0.927 | 0.942 | 0.946 | ||
Color channel L | |||||||
Logistic | Fresh radish | 98.7 | 0.973 | 1.000 | 0.986 | 0.999 | 0.999 |
Fermented radish | 1.000 | 0.974 | 0.987 | 0.999 | 0.999 | ||
Multi-Class Classifier | Fresh radish | 98.7 | 0.973 | 1.000 | 0.986 | 0.999 | 0.999 |
Fermented radish | 1.000 | 0.974 | 0.987 | 0.999 | 0.999 | ||
Color channel Y | |||||||
Logistic | Fresh radish | 98.7 | 1.000 | 0.974 | 0.987 | 0.999 | 0.999 |
Fermented radish | 0.973 | 1.000 | 0.986 | 0.999 | 0.999 | ||
Multi-Class Classifier | Fresh radish | 98.7 | 1.000 | 0.974 | 0.987 | 0.999 | 0.999 |
Fermented radish | 0.973 | 1.000 | 0.986 | 0.999 | 0.999 |
Classifier | Class | Average Accuracy (%) | TP Rate | Precision | F-Measure | ROC Area | PRC Area |
---|---|---|---|---|---|---|---|
Each of the color spaces: RGB, Lab, XYZ, and YUV | |||||||
Logistic | Fresh radish | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Fermented radish | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||
Multi-Class Classifier | Fresh radish | 100 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Fermented radish | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Azizi, A. Evaluation of the Effect of Postharvest Lacto-Fermentation on Radish Using Innovative Discriminative Models Based on Textures of Images. Biol. Life Sci. Forum 2022, 16, 3. https://doi.org/10.3390/IECHo2022-12478
Ropelewska E, Azizi A. Evaluation of the Effect of Postharvest Lacto-Fermentation on Radish Using Innovative Discriminative Models Based on Textures of Images. Biology and Life Sciences Forum. 2022; 16(1):3. https://doi.org/10.3390/IECHo2022-12478
Chicago/Turabian StyleRopelewska, Ewa, and Afshin Azizi. 2022. "Evaluation of the Effect of Postharvest Lacto-Fermentation on Radish Using Innovative Discriminative Models Based on Textures of Images" Biology and Life Sciences Forum 16, no. 1: 3. https://doi.org/10.3390/IECHo2022-12478
APA StyleRopelewska, E., & Azizi, A. (2022). Evaluation of the Effect of Postharvest Lacto-Fermentation on Radish Using Innovative Discriminative Models Based on Textures of Images. Biology and Life Sciences Forum, 16(1), 3. https://doi.org/10.3390/IECHo2022-12478