Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofortification Itinerary
2.2. Mineral Content in Tomatoes
2.3. Total Soluble Solids
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Schonewille, J.T. Magnesium in dairy cow nutrition: An overview. Plant Soil 2013, 368, 167–178. [Google Scholar] [CrossRef]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium deficiency in plants: An urgent problem. Crop. J. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Song, Y.; Ridker, P.M.; Manson, J.E.; Cook, N.R.; Buring, J.E.; Liu, S. Magnesium intake, C-reactive protein, and the prevalence of metabolic syndrome in middle-aged and older U.S. Women. Diabetes Care 2005, 28, 1438–1444. [Google Scholar] [CrossRef]
- Ceylan, Y.; Kutman, U.B.; Mengutay, M.; Cakmack, I. Magnesium applications to growth medium and foliage the starch distribution, increase the grain size and improve the seed germination in wheat. Plant Soil 2016, 406, 145–156. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Clugston, G.A.; Smith, T.E. Global nutrition problems and novel foods. Asia Pac. J. Clin. Nutr. 2002, 11, S100–S111. [Google Scholar] [CrossRef]
- Díaz-Gómez, J.; Twyman, R.M.; Zhu, C.; Farré, G.; Serrano, J.C.; Portero-Otin, M.; Muñoz, P.; Sandmann, G.; Capell, T.; Christou, P. Biofortification of crops with nutrients: Factors affecting utilization and storage. Curr. Opin. Biotechnol. 2017, 44, 115–123. [Google Scholar] [CrossRef]
- Alshaal, T.; El-Ramady, H. Foliar application: From plant nutrition to biofortification. Environ. Biodivers. Soil Secur. 2017, 1, 71–83. [Google Scholar] [CrossRef]
- Carrondo, M.; Reboredo, F.; Ganho, R.; Santos Oliveira, J.F. Heavy metal analysis of sediments in Tejo estuary, Portugal, using a rapid flameless atomic absorption procedure. Talanta 1984, 31, 561–564. [Google Scholar] [CrossRef]
- Reboredo, F.H.S.; Ribeiro, C.A.G. Vertical distribution of Al, Cu, Fe and Zn in soil salt marshes of the Sado estuary, Portugal. Int. J. Environ. Stud. 1984, 23, 249–253. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, M.; et al. Can Foliar Pulverization with CaCl2 and Ca(NO3)2 Trigger Ca Enrichment in Solanum tuberosum L. Tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Chen, J.; Coppens, F.; Inzé, D.; Verbruggen, N. Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol. 2011, 192, 428–436. [Google Scholar] [CrossRef]
- Uchida, R. Essential nutrients for plant growth: Nutrient functions and deficiency symptoms. Plant Nutr. Manag. Hawaii’s Soils 2000, 4, 31–55. [Google Scholar]
- Coelho, A.R.F.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Daccak, D.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; Legoinha, P.; et al. Nutrient Interactions in the Natural Fortification of Tomato with Mg: An Analytical Perspective. Biol. Life Sci. Forum 2021, 4, 87. [Google Scholar] [CrossRef]
- Agarwala, S.C.; Mehrotra, S.C. Iron-magnesium antagonism in growth and metabolism of radish. Plant Soil 1984, 80, 355–361. [Google Scholar] [CrossRef]
- Fageria, N.K. Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops. Pesqui. Agropecu. Bras 2002, 37, 1765–1772. [Google Scholar] [CrossRef]
- Weih, M.; Liu, H.; Colombi, T.; Keller, T.; Jack, O.; Vallenback, P.; Westerbergh, A. Evidence for magnesium–phosphorus synergism and co-limitation of grain yield in wheat agriculture. Sci. Rep. 2021, 11, 9012. [Google Scholar] [CrossRef]
- Kleiber, T.; Golcz, A.; Krzesinski, W. Effect of magnesium nutrition on onion (Allium cepa L.). Part I. Yielding and nutrient status. Ecol. Chem. Eng. 2012, 19, 97–105. [Google Scholar] [CrossRef]
- Armstrong, D.L.; Griffin, K.P.; Danner, M. Better Crops with Plant Food. 1998, Volume LXXXII, No. 3. Available online: http://www.ipni.net/publication/bettercrops.nsf/0/E90E04A957EA624285257980007CD63C/$FILE/BC-1998-3.pdf (accessed on 5 February 2022).
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Jarquín-Enríquez, L.; Mercado-Silva, E.M.; Maldonado, J.L.; Lopez-Baltazar, J. Lycopene content and color index of tomatoes are affected by the greenhouse cover. Sci. Hortic. 2013, 155, 43–48. [Google Scholar] [CrossRef]
- Cebrino, F.G.; Ruiz, M.L.; Yuste, M.C.A.; García, M.J.B.; Gómez, D.G. Characterization of traditional tomato varieties grown in organic conditions. Span J. Agric. Res. 2011, 2, 444–452. [Google Scholar] [CrossRef]
- Heinz Company. 2016. Available online: https://www.heinzseed.com/hs_about (accessed on 17 December 2021).
- Helyes, L.; Pék, Z.; Lugasi, A. Function of the variety technological traits and growing conditions on fruit components of tomato (Lycopersicon lycopersicum L. Karsten). Acta Aliment. 2008, 37, 427–436. [Google Scholar] [CrossRef]
Treatments | Mg | Ca | Fe | Zn | P | K | Cu |
---|---|---|---|---|---|---|---|
mg/100 g | |||||||
Control | 53.97 a ± 1.08 | 31.48 a ± 0.16 | 6.36 b ± 0.13 | 1.86 a ± 0.47 | 283 abc ± 9 | 4616 a ± 44 | 1.68 a ± 0.24 |
4% MgSO4 | 190 a ± 91 | 30.93 a ± 6.39 | 5.13 b ± 0.30 | 0.73 a ± 0.16 | 315 a ± 10 | 3509 b ± 89 | 1.13 a ± 0.02 |
8% MgSO4 | 143 a ± 35 | 31.20 a ± 0.29 | 6.12 b ± 0.86 | 1.75 a ± 0.41 | 270 bc ± 12 | 3735 b ± 67 | 1.54 a ± 0.23 |
12% MgSO4 | 55.11 a ± 7.43 | 18.78 a ± 0.91 | 6.41 b ± 1.05 | 1.05 a ± 0.41 | 254 c ± 1 | 3410 b ± 116 | 1.08 a ± 0.21 |
16% MgSO4 | 49.48 a ± 2.50 | 19.16 a ± 2.36 | 10.25 a ± 0.91 | 1.37 a ± 0.20 | 297 ab ± 8 | 3558 b ± 155 | 1.42 a ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Luís, I.C.; Marques, A.C.; Pessoa, C.C.; Daccak, D.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; Legoinha, P.; et al. Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium. Biol. Life Sci. Forum 2022, 16, 16. https://doi.org/10.3390/IECHo2022-12509
Coelho ARF, Luís IC, Marques AC, Pessoa CC, Daccak D, Silva MM, Simões M, Reboredo FH, Pessoa MF, Legoinha P, et al. Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium. Biology and Life Sciences Forum. 2022; 16(1):16. https://doi.org/10.3390/IECHo2022-12509
Chicago/Turabian StyleCoelho, Ana Rita F., Inês Carmo Luís, Ana Coelho Marques, Cláudia Campos Pessoa, Diana Daccak, Maria Manuela Silva, Manuela Simões, Fernando H. Reboredo, Maria F. Pessoa, Paulo Legoinha, and et al. 2022. "Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium" Biology and Life Sciences Forum 16, no. 1: 16. https://doi.org/10.3390/IECHo2022-12509
APA StyleCoelho, A. R. F., Luís, I. C., Marques, A. C., Pessoa, C. C., Daccak, D., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Galhano, C., Regato, M., Regato, J., Dias, J., Beja, N., Guerreiro, I., Ramalho, J. C., Campos, P. S., Pais, I. P., ... Lidon, F. C. (2022). Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium. Biology and Life Sciences Forum, 16(1), 16. https://doi.org/10.3390/IECHo2022-12509