Oily Fish as a Source of Bioactive Compounds in the Diet †
Abstract
:1. Introduction
2. Composition of Nutritional and Bioactive Compounds in Selected Species
2.1. Protein and Amino Acid Profile
2.2. Lipids and Fatty Acids
2.3. Vitamins
2.4. Minerals
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, L.; Ling, P.; Wang, Z.; Niu, R.; Hu, C.; Zhang, T.; Lin, X. A novel polypeptide from shark cartilage with potent anti-angiogenic activity. Cancer Biol. Ther. 2007, 6, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Vlieg, P.; Murray, T.; Body, D. Nutritional Data on Six Oceanic Pelagic Fih Species from Nez Zeland Waters. J. Food Compos. Anal. 1993, 6, 45–54. [Google Scholar] [CrossRef]
- Bougatef, A.; Balti, R.; Haddar, A.; Jellouli, K.; Souissi, N.; Nasri, M. Protein hydrolysates from bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnol. Bioprocess Eng. 2012, 17, 841–852. [Google Scholar] [CrossRef]
- Balami, S.; Sharma, A.; Karn, R. Significance Of Nutritional Value Of Fish For Human Health. Malaysian J. Halal Res. 2019, 2, 32–34. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 293, 561–570. [Google Scholar] [CrossRef]
- Olmedo, P.; Hernández, A.F.; Pla, A.; Femia, P.; Navas-Acien, A.; Gil, F. Determination of essential elements (copper, manganese, selenium and zinc) in fish and shellfish samples. Risk and nutritional assessment and mercury–selenium balance. Food Chem. Toxicol. 2013, 62, 299–307. [Google Scholar] [CrossRef]
- Erkan, N.; Can Tunçelli, İ.; Özden, Ö.; Üren, S. Nutritional Composition and heavy Metal Concentrations in Sardinella maderensis (Lowe, 1838) obtained from the Mauritanian fisheries. J. Appl. Ichthyol. 2020, 36, 906–911. [Google Scholar] [CrossRef]
- Mesa, M.D.; Gil, F.; Olmedo, P. Nutritional Importance of Selected Fresh Fishes, Shrimps and Mollusks to Meet Compliance with Nutritional Guidelines of n-3 LC-PUFA Intake in Spain. Nutrients 2021, 13, 465. [Google Scholar] [CrossRef]
- Weichselbaum, E.; Coe, S.; Buttriss, J.; Stanner, S. Fish in the diet: A review. Nutr. Bull. 2013, 38, 128–177. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO); Organisation des Nations Unies pour l’alimentation et l’Agriculture (FAO); International Network of Food Data Systems (INFOODS); Réseau International de Systèmes de Données sur les Aliments (INFOODS). FAO/INFOODS Food Composition Table for Western Africa (2019)—Table de Composition des Aliments FAO/INFOODS pour l’Afrique de l’Ouest (2019); FAO: Roma, Italy, 2020; ISBN 9789251322239. [Google Scholar]
- Olga, M.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composicion de Alimentos, 19th ed.; Ediciones pirámide: Madrid, Spain, 2018; ISBN 9788436839470. [Google Scholar]
- Ryan, J.T.; Ross, R.P.; Bolton, D.; Fitzgerald, G.F.; Stanton, C. Bioactive peptides from muscle sources: Meat and fish. Nutrients 2011, 3, 765–791. [Google Scholar] [CrossRef]
- Kim, S.K.; Ngo, D.H.; Vo, T.S. Marine Fish-Derived Bioactive Peptides as Potential Antihypertensive Agents, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 65, ISBN 9780124160033. [Google Scholar]
- Chiesa, G.; Busnelli, M.; Manzini, S.; Parolini, C. Nutraceuticals and bioactive components from fish for dyslipidemia and cardiovascular risk reduction. Mar. Drugs 2016, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef] [PubMed]
- Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments—A review. Food Res. Int. 2020, 136, 109504. [Google Scholar] [CrossRef] [PubMed]
- Je, J.Y.; Qian, Z.J.; Byun, H.G.; Kim, S.K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42, 840–846. [Google Scholar] [CrossRef]
- Hsu, K.C.; Li-Chan, E.C.Y.; Jao, C.L. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem. 2011, 126, 617–622. [Google Scholar] [CrossRef]
- Lee, S.H.; Qian, Z.J.; Kim, S.K. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chem. 2010, 118, 96–102. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.C.; Kurozawa, L.E.; Netto, F.M.; Hubinger, M.D. Optimization of the Enzymatic Hydrolysis of Blue Shark Skin. J. Food Sci. 2011, 76, 938–949. [Google Scholar] [CrossRef]
- Wu, H.; He, H.L.; Chen, X.L.; Sun, C.Y.; Zhang, Y.Z.; Zhou, B.C. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochem. 2008, 43, 457–461. [Google Scholar] [CrossRef]
- Smida, M.A.B.; Marzouk, B.; Cafsi, M. El The composition of fatty acids in the tissues of Tunisian swordfish (Xiphias gladius). Food Chem. 2009, 115, 522–528. [Google Scholar] [CrossRef]
- Cobas, N.; Piñeiro-Lago, L.; Gómez-Limia, L.; Franco, I.; Martínez, S. Vitamin retention during the canning of swordfish (Xiphias gladius) with different filling media. J. Food Sci. 2021, 86, 1704–1713. [Google Scholar] [CrossRef]
- Dias, M.G.; Sanchez, M.V.; Bartolo, H.; Oliveira, L. Vitamin Content of Fish and Fish Products Consumed in Portugal. Electron. J. Environ. Agric. Food Chem. 2003, 2, 510–513. [Google Scholar]
- Bernstein, A.S.; Oken, E.; De Ferranti, S.; Lowry, J.A.; Ahdoot, S.; Baum, C.R.; Bernstein, A.S.; Bole, A.; Byron, L.G.; Landrigan, P.J.; et al. Fish, shellfish, and children’s health: An assessment of benefits, risks, and sustainability. Pediatrics 2019, 143, e20190999. [Google Scholar] [CrossRef] [PubMed]
- Cabañero, A.I.; Carvalho, C.; Madrid, Y.; Batoréu, C.; Cámara, C. Quantification and speciation of mercury and selenium in fish samples of high consumption in Spain and Portugal. Biol. Trace Elem. Res. 2005, 103, 17–35. [Google Scholar] [CrossRef]
- Committee, E.S. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 1–36. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Raymond, L.J. Selenium status and intake influences mercury exposure risk assessments. In Selenium in the Environment and Human Health; Taylor and Francis Group: London, UK, 2014; pp. 203–205. [Google Scholar] [CrossRef]
- Mahaffey, K.R. Fish and shellfish as dietary sources of methylmercury and the ω-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid: Risks and benefits. Environ. Res. 2004, 95, 414–428. [Google Scholar] [CrossRef]
- Park, K.; Mozaffarian, D. Omega-3 fatty acids, mercury, and selenium in fish and the risk of cardiovascular diseases. Curr. Atheroscler. Rep. 2010, 12, 414–422. [Google Scholar] [CrossRef]
Xiphias gladius | Prionace glauca | Isurus oxyrinchus | Thunnus thynnus | Daily Recommendations for Men | Daily Recommendations for Women | |
---|---|---|---|---|---|---|
g/100 g | ||||||
Energy (Kcal) | 107 | 82 | 87 | 200 | 3.000 | 2.300 |
Total protein | 17 | 18.7 | 20.7 | 23 | 54 | 41 |
Total lipids | 4.3 | 4.5 | 4.4 | 12 | 100–117 | 77–89 |
SFA | 1.15 | 0.2 | 0.3 | 3.08 | 23–27 | 18–20 |
MFA | 1.43 | 0.2 | 0.3 | 2.66 | 67 | 51 |
PFA | 0.99 | 1.2 | 1 | 3.58 | 17 | 13 |
Carbohydrates | 0 | 0 | 0.21 | 0 | 375–413 | 288–316 |
Fiber | 0 | 0 | - | 0 | >35 | >25 |
Water | 78.7 | 78.5 | 76 | 65 | 2500 | 2000 |
mg/g | ||||||
Calcium | 19 | 34 | 12 | 38 | 1000 | 1000 |
Iron | 0.9 | 0.8 | 0.957 | 1.3 | 10 | 18 |
Iodine | 17.2 | 0 | - | 36.7 | 140 | 110 |
Magnesium | 57 | 49 | 40 | 28 | 350 | 330 |
Zinc | 0.4 | 0.4 | 0.358 | 1.1 | 15 | 15 |
Sodium | 102 | 79 | 90 | 43 | <2000 | <2000 |
Potassium | 342 | 160 | 167 | 40 | 3500 | 3500 |
Phosphorus | 506 | 210 | 190 | 200 | 700 | 700 |
Selenium | 48.1 | 28 | 28.5 | 82 | 70 | 55 |
Thiamine | 0.05 | 0.04 | 0.03 | 0.05 | 1.2 | 0.9 |
Riboflavin | 0.05 | 0.62 | 0.58 | 0.2 | 1.8 | 1.4 |
Niacin equivalents | 9 | 2.9 | 2.1 | 17.8 | 20 | 15 |
Vitamin B6 | 0.51 | 0.50 | - | 0.46 | 1.8 | 1.6 |
Folates | 15 | 0 | - | 15 | 400 | 400 |
Vitamin B12 | 5 | 1.49 | 1.35 | 5 | 2 | 2 |
Vitamin A | 500 | 70 | 8.36 | 60 | 1000 | 1000 |
Vitamin D | 7.2 | 8 | 8 | 25 | 15 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chamorro, F.; Carpena, M.; Pereira, A.G.; Echave, J.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Oily Fish as a Source of Bioactive Compounds in the Diet. Biol. Life Sci. Forum 2022, 12, 33. https://doi.org/10.3390/IECN2022-12412
Chamorro F, Carpena M, Pereira AG, Echave J, Fraga-Corral M, Garcia-Perez P, Simal-Gandara J, Prieto MA. Oily Fish as a Source of Bioactive Compounds in the Diet. Biology and Life Sciences Forum. 2022; 12(1):33. https://doi.org/10.3390/IECN2022-12412
Chicago/Turabian StyleChamorro, Franklin, Maria Carpena, Antia G. Pereira, Javier Echave, Maria Fraga-Corral, Pascual Garcia-Perez, Jesus Simal-Gandara, and Miguel A. Prieto. 2022. "Oily Fish as a Source of Bioactive Compounds in the Diet" Biology and Life Sciences Forum 12, no. 1: 33. https://doi.org/10.3390/IECN2022-12412
APA StyleChamorro, F., Carpena, M., Pereira, A. G., Echave, J., Fraga-Corral, M., Garcia-Perez, P., Simal-Gandara, J., & Prieto, M. A. (2022). Oily Fish as a Source of Bioactive Compounds in the Diet. Biology and Life Sciences Forum, 12(1), 33. https://doi.org/10.3390/IECN2022-12412