Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth and Insecticide Treatment
2.2. Assay of Enzyme Activity
2.3. Contents of Plant Health Indices and Salicylic Acid
2.4. Concentration of Amino Acids
2.5. Amount of Soluble Carbohydrates
2.6. Titer of Mineral Elements
2.7. Statistical Analysis
3. Results
3.1. Enzymatic Parameters
3.2. Plant Health Indices and SA
3.3. Soluble Carbohydrates
3.4. Mineral Elements
3.5. AAs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goh, W.L.; Yiu, P.H.; Wong, S.C.; Rajan, A. Safe use of chlorpyrifos for insect pest management in leaf mustard (Brassica juncea L. Coss). J. Food Agric. Environ. 2011, 9, 1064–1066. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Kumar, R.; Shahzad, B.; Thukral, A.K.; Bhardwaj, R.; Tejada Moral, M. Brassinoster-oid-mediated pesticide detoxification in plants: A mini-review. Cogent Food Agric. 2018, 4, 1436212. [Google Scholar] [CrossRef]
- Punja, Z.K.; Tirajoh, A.; Collyer, D.; Ni, L. Efficacy of Bacillus subtilis strain QST 713 (Rhapsody) against four major diseases of greenhouse cucumbers. Crop Prot. 2019, 124, 104845. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, W.; Shen, Y.; Liu, Y.; Liu, X.J. Dynamics and residues of chlorpyrifos and dichlorvos in cucumber grown in greenhouse. Food Control 2012, 26, 231–234. [Google Scholar] [CrossRef]
- Fischer, R.; Weiss, H. Spirotetramat (Movento®)—Discovery, synthesis and physico-chemical properties. Bayer CropSci. J. 2008, 61, 127–140. [Google Scholar]
- Nauen, R.; Reckmann, U.; Thomzik, J.; Thielert, W. Biological profile of spirotetramat (Movento®)—A new two-way systemic (ambimobile) insecticide against sucking pest species. Bayer CropSci. J. 2008, 61, 245–278. [Google Scholar]
- Bruck, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kuhnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.F.; Reckmann, U.; Schnorbach, H.J.; et al. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Nejat, N.; Mantri, N. Plant Immune System: Crosstalk between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr. Issues Mol. Biol. 2017, 23, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A.; Krüler, V.; Winkelmüller, T.M.; Wang, Y.; Mine, A.; et al. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, U.; Field, B. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 2018, 69, 2753–2758. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S. The language of reactive oxygen species signaling in plants. J. Bot. 2012, 2012, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Homayoonzadeh, M.; Moeini, P.; Talebi, K.; Allahyari, H.; Torabi, E.; Michaud, J.P. Physiological responses of plants and mites to salicylic acid improve the efficacy of spirodiclofen for controlling Tetranychus urticae (Acari: Tetranychidae) on greenhouse tomatoes. Exp. Appl. Acarol. 2020, 82, 319–333. [Google Scholar] [CrossRef]
- Homayoonzadeh, M.; Hosseininaveh, V.; Haghighi, S.R.; Talebi, K.; Roessner, U.; Maali-Amiri, R. Evaluation of physiological and biochemical responses of pistachio plants (Pistacia vera L.) exposed to pesticides. Ecotoxicology 2021, 30, 1084–1097. [Google Scholar] [CrossRef]
- Homayoonzadeh, M.; Esmaeily, M.; Talebi, K.; Allahyari, H.; Nozari, J.; Michaud, J.P. Micronutrient fertilization of greenhouse cucumbers mitigates pirimicarb resistance in Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 2020, 113, 2864–2872. [Google Scholar] [CrossRef]
- Homayoonzadeh, M.; Moeini, P.; Talebi, K.; Roessner, U.; Hosseininaveh, V. Antioxidant system status of cucumber plants under pesticides treatment. Acta Physiol. Plant. 2020, 42, 161. [Google Scholar] [CrossRef]
- Fish, W.W. A reliable methodology for quantitative extraction of fruit and vegetable physiological amino acids and their subsequent analysis with commonly available HPLC Systems. Food Nutr. Sci. 2012, 3, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.D.; Terry, L.A. Development of a rapid method for the sequential extraction and subsequent quantification of fatty acids and sugars from avocado mesocarp tissue. J. Agric. Food Chem. 2008, 56, 7439–7445. [Google Scholar] [CrossRef]
- Zafar, M.; Mir, A.K.; Mushtaq, A.; Gul, J.; Shazia, S.; Kifayat, U.; Sarfaraz, K.M.; Farooq, A.; Asma, J.; Abdul, N. Elemental analysis of some medicinal plants used in traditional medicine by atomic absorption spectrophotometer (AAS). J. Med. Plants Res. 2010, 4, 1987–1990. [Google Scholar] [CrossRef]
- Baker, W.; Thompson, T. Determination of total nitrogen in plant samples by Kjeldahl. In Plant Analysis Reference Proce-Dures for the Southern Region of the United State; Plank, C.O., Ed.; The Georgia Agricultural Experiment: Athens, GA, USA, 1992; Volume 368, pp. 13–16. [Google Scholar]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant. Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Yousuf, P.Y.; Hakeem, K.U.; Chandna, R.; Ahmad, P. Role of glutathione reductase in plant abiotic stress. In Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 149–158. [Google Scholar]
- Shakir, S.K.; Irfan, S.; Akhtar, B.; Rehman, S.U.; Daud, M.K.; Taimur, N.; Azizullah, A. Pesticide-induced oxidative stress and antioxidant responses in tomato (Solanum lycopersicum) seedlings. Ecotoxicology 2018, 27, 919–935. [Google Scholar] [CrossRef]
- Parween, T.A.; Jan, S.; Fatma, T. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. J. Environ. Sci. Technol. 2012, 9, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, M.R.B.; Ende, W.V.D. Sweet immunity in the plant circadian regulatory network. J. Exp. Bot. 2013, 64, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Dordas, C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerringal, J.; Moller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 135–189. [Google Scholar] [CrossRef]
- Maathuis, F.J.; Diatloff, E. Roles and functions of plant mineral nutrients. In Plant Mineral Nutrients; Maathuis, F.J., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp. 1–21. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Diaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Burkhead, J.L.; Gogolin-Reynolds, K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef]
- Sinclair, S.A.; Kramer, U. The zinc homeostasis network of land plants. Biochim. Biophys. Acta Mol. Cell. Res. 2012, 1823, 1553–1567. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Krohling, C.A.; Eutropio, F.J.; Bertolazi, A.A.; Dobbss, L.B.; Campostrini, E.; Dias, T.; Ramos, A.C. Ecophysiology of iron homeostasis in plants. Soil Sci. Plant Nutr. 2016, 62, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, D.K.; Singh, S.; Gaur, S.; Singh, S.; Yadav, V.; Liu, S.; Singh, V.P.; Sharma, S.; Srivastava, P.; Prasad, S.M.; et al. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ. Sci. 2018, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Amtmann, A.; Armengaud, P. Effects of N, P, K and S on metabolism: New knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 2009, 12, 275–283. [Google Scholar] [CrossRef]
- Duman, F. Uptake of mineral elements during abiotic stress. In Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 270–271. [Google Scholar] [CrossRef]
- Duke, S.O.; Lydon, J.; Koskinen, W.C.; Moorman, T.B.; Chaney, R.L.; Hammerschmidt, R. Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. J. Agric. Food Chem. 2012, 60, 10375–10397. [Google Scholar] [CrossRef]
- Rai, V. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Zeier, J. New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ. 2013, 36, 2085–2103. [Google Scholar] [CrossRef]
- van Eerd, L.L.; Hoagland, R.E.; Zablotowicz, R.; Hall, J.C. Pesticide metabolism in plants and microorganisms. Weed Sci. 2003, 51, 472–495. [Google Scholar] [CrossRef]
- Khan, M.I.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bashri, G.; Singh, A.; Prasad, S.M. Regulation of xenobiotics in higher plants: Signalling and detoxification. In Plant Responses to Xenobiotics; Singh, A., Prasad, S.M., Singh, R.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 39–56. [Google Scholar] [CrossRef]
- Szczepaniec, A.; Raupp, M.J.; Parker, R.D.; Kerns, D.; Eubanks, M.D. Neonicotinoid insecticides alter induced defenses and increase susceptibility to spider mites in distantly related crop plants. PLoS ONE 2013, 8, e62620. [Google Scholar] [CrossRef] [Green Version]
- Ford, K.A.; Casida, J.E.; Chandran, D.; Gulevich, A.G.; Okrent, R.; Durkin, K.; Sarpong, R.; Bunnelle, E.M.; Wildermuth, M.C. Neonicotinoid insecticides induce salicylate-associated plant defense responses. Proc. Natl. Acad. Sci. USA 2010, 107, 17527–17532. [Google Scholar] [CrossRef] [Green Version]
- Saxena, I.; Srikanth, S.; Chen, Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front. Plant Sci. 2016, 7, 570. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Siegert, E.; Stepushenko, O.; Glauser, G.; Farmer, E.E. Membranes as structural antioxidants recycling of malondialdehyde to its source in oxidation-sensitive chloroplast fatty acids. J. Biol. Chem. 2016, 291, 13005–13013. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M. Leaf pigment content. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 117–142. [Google Scholar] [CrossRef]
- Heidarvand, L.; Maali-Amiri, R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. J. Plant Physiol. 2013, 170, 459–469. [Google Scholar] [CrossRef]
- Pamplin, E.; Chapman, J. Sucrose suppression of chlorophyll synthesis in tissue culture: Changes in the activity of the enzymes of the chlorophyll biosynthetic pathway. J. Exp. Bot. 2015, 26, 212–220. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015, 76, 25–40. [Google Scholar] [CrossRef]
Enzymes | Control | Treated | t-Value | p-Value |
---|---|---|---|---|
SOD | 0.359 ± 0.026 | 0.578 ± 0.027 * | 4.656 | 0.014 |
CAT | 0.046 ± 0.002 | 0.056 ± 0.003 * | 3.753 | 0.039 |
GPX | 0.266 ± 0.018 | 0.354 ± 0.024 * | 2.509 | 0.045 |
APX | 0.359 ± 0.025 | 0.516 ± 0.041 * | 2.107 | 0.032 |
GR | 0.561 ± 0.021 | 0.724 ± 0.032 * | 3.076 | 0.013 |
PAL | 0.207 ± 0.003 | 0.299 ± 0.004 * | 4.082 | 0.026 |
Parameters | Control | Treated | t-Value | p-Value |
---|---|---|---|---|
MDA | 0.469 ± 0.026 | 0.458 ± 0.037 | 0.656 | 0.095 |
Chl | 45.14 ± 5.021 | 49.56 ± 6.013 | 0.753 | 0.088 |
H2O2 | 9.376 ± 0.518 | 8.964 ± 0.424 | 0.819 | 0.076 |
SA | 0.357 ± 0.029 | 0.491 ± 0.041 * | 4.852 | 0.049 |
ELI | 15.31 ± 0.413 | 14.78 ± 0.524 | 0.922 | 0.066 |
Parameters | Control | Treated | t-Value | p-Value |
---|---|---|---|---|
Sucrose | 1.22 ± 0.261 | 3.11 ± 0.581 * | 5.513 | 0.039 |
Glucose | 0.91 ± 0.101 | 2.29 ± 0.011 * | 4.413 | 0.024 |
Fructose | 0.32 ± 0.008 | 0.83 ± 0.003 * | 3.844 | 0.016 |
Parameters | Control | Treated | t-Value | p-Value |
---|---|---|---|---|
Calcium | 23.73 ± 0.161 | 25.11 ± 0.181 * | 5.623 | 0.045 |
Manganese | 0.058 ± 0.015 | 0.095 ± 0.011 * | 4.523 | 0.035 |
Copper | 0.012 ± 0.008 | 0.019 ± 0.003 * | 3.954 | 0.027 |
Zinc | 0.007 ± 0.001 | 0.012 ± 0.002 * | 2.921 | 0.017 |
Iron | 0.138 ± 0.003 | 0.205 ± 0.005 * | 5.489 | 0.048 |
Magnesium | 13.97 ± 0.19 | 14.68 ± 0.11 * | 4.952 | 0.031 |
Nitrogen | 0.031 ± 0.002 | 0.037 ± 0.003 * | 3.101 | 0.025 |
AAs | Control | Treated | t-Value | p-Value |
---|---|---|---|---|
Alanine | 15.91 ± 0.64 | 15.74 ± 0.68 | 0.946 | 0.870 |
Arginine | 2.76 ± 0.44 | 6.82 ± 0.29 * | 2.302 | 0.015 |
Asparagine | 5.17 ± 0.45 | 5.66 ± 0.81 | 0.529 | 0.623 |
Aspartic acid | 44.92 ± 2.77 | 43.92 ± 2.14 | 0.662 | 0.789 |
Cysteine | 10.96 ± 0.30 | 24.41 ± 0.33 * | 3.569 | 0.019 |
GABA | 0.34 ± 0.02 | 0.65 ± 0.06 * | 4.629 | 0.025 |
Glutamic acid | 68.68 ± 4.85 | 163.6 ± 4.67 * | 5.364 | 0.037 |
Glutamine | 19.20 ± 0.35 | 67.13 ± 4.81 * | 2.159 | 0.047 |
Glycine | 4.02 ± 0.26 | 9.94 ± 0.84 * | 3.179 | 0.011 |
Histidine | 6.09 ± 1.12 | 9.42 ± 3.13 | 0.715 | 0.373 |
Isoleucine | 2.28 ± 0.07 | 3.73 ± 0.21 * | 4.801 | 0.026 |
Leucine | 1.36 ± 0.06 | 1.18 ± 0.05 | 0.805 | 0.101 |
Lysine | 3.00 ± 0.14 | 9.18 ± 0.28 * | 5.521 | 0.036 |
Methionine | 1.35 ± 0.25 | 2.80 ± 0.34 * | 4.582 | 0.026 |
Ornithine | 0.05 ± 0.01 | 0.021 ± 0.03 * | 2.360 | 0.019 |
Phenylalanine | 2.21 ± 0.08 | 6.39 ± 0.24 * | 3.892 | 0.0402 |
Serine | 22.10 ± 0.36 | 21.94 ± 1.03 | 0.922 | 0.820 |
Threonine | 14.07 ± 0.36 | 14.19 ± 0.52 | 0.452 | 0.866 |
Tryptophan | 3.92 ± 0.96 | 10.11 ± 1.75 * | 5.520 | 0.036 |
Tyrosine | 2.65 ± 0.09 | 5.83 ± 0.02 * | 4.852 | 0.015 |
Valine | 2.38 ± 0.08 | 2.66 ± 0.07 | 0.850 | 0.752 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homayoonzadeh, M.; Haghighi, S.R.; Hosseininaveh, V.; Talebi, K.; Roessner, U.; Winters, A. Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.). Biol. Life Sci. Forum 2022, 11, 3. https://doi.org/10.3390/IECPS2021-11921
Homayoonzadeh M, Haghighi SR, Hosseininaveh V, Talebi K, Roessner U, Winters A. Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.). Biology and Life Sciences Forum. 2022; 11(1):3. https://doi.org/10.3390/IECPS2021-11921
Chicago/Turabian StyleHomayoonzadeh, Mohammad, Sajjad Reyhani Haghighi, Vahid Hosseininaveh, Khalil Talebi, Ute Roessner, and Ana Winters. 2022. "Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.)" Biology and Life Sciences Forum 11, no. 1: 3. https://doi.org/10.3390/IECPS2021-11921
APA StyleHomayoonzadeh, M., Haghighi, S. R., Hosseininaveh, V., Talebi, K., Roessner, U., & Winters, A. (2022). Effect of Spirotetramat Application on Salicylic Acid, Antioxidative Enzymes, Amino Acids, Mineral Elements, and Soluble Carbohydrates in Cucumber (Cucumis sativus L.). Biology and Life Sciences Forum, 11(1), 3. https://doi.org/10.3390/IECPS2021-11921