Natural Enrichment of Solanum tuberosum L. with Calcium—Monitorization of Mineral Interactions in Plant Tissues †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofortification Itinerary
2.2. Mineral Content in Soils, Potato Tubers and Leaves
2.3. Colorimetric Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peacock, M. Calcium Metabolism in Health and Disease. Clin. J. Am. Soc. Nephrol. 2010, 5, S23–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IOM-Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; The National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-16395-8. [Google Scholar]
- Buchowski, M.S. Calcium in the context of dietary sources and metabolism. In Calcium: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; Food and Nutritional Components in Focus–Book Series; Royal Society of Chemistry: Cambridge, UK, 2015; Chapter 1; pp. 3–20. ISBN 978-1-78262-213-0. [Google Scholar]
- Sharma, D.; Jamra, G.; Singh, U.M.; Sood, S.; Kumar, A. Calcium Biofortification: Three Pronged Molecular Approaches for Dissecting Complex Trait of Calcium Nutrition in Finger Millet (Eleusine coracana) for Devising Strategies of Enrichment of Food Crops. Front. Plant Sci. 2017, 7, 2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravina, P.; Sayaji, D.; Avinash, M. Calcium and its role in human body. IJRPBS 2013, 4, 659–668. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Luís, I.C.; Caleiro, J.; Simões, M.; Kullberg, J.; Legoinha, P.; Brito, M.; et al. Can Foliar Pulverization with CaCl2 and Ca(NO3)2 Trigger Ca Enrichment in Solanum tuberosum L. Tubers? Plants 2021, 10, 245. [Google Scholar] [CrossRef]
- Coelho, A.; Pessoa, C.; Marques, A.; Luís, I.; Daccak, D.; Silva, M.M.; Simões, M.; Rebo-redo, F.; Pessoa, M.; Legoinha, P.; et al. Na-tural mineral enrichment in Solanum tuberosum L. cv. Agria: Accumulation of Ca and interaction with other nutrients by XRF analysis. In Proceedings of the 1st International Electronic Conference on Plant Science, Online, 1–15 December 2020; Volume 1, p. 15. [Google Scholar] [CrossRef]
- Coelho, A.R.F.; Marques, A.C.; Pessoa, C.C.; Luís, I.C.; Daccak, D.; Simões, M.; Reboredo, F.H.; Pessoa, M.; Silva, M.M.; Legoinha, P.; et al. Calcium Biofortification in Solanum tuberosum L. cv. Agria: A Technical Workflow. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), Leiria, Portugal, 10–12 May 2021; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Coelho, A.; Luís, I.C.; Marques, A.C.; Pessoa, C.; Daccak, D.; Caleiro, J.; Brito, M.; Kullberg, J.; Silva, M.; Simões, M.; et al. Monitoring of a calcium biofortification workflow for tubers of Solanum tuberosum L. cv. Picasso using smart farming technology. In Proceedings of the 1st International Electronic Conference on Agronomy, Online, 3–17 May 2021; MDPI: Basel, Switzerland, 2021. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in Plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Hocking, B.; Tyerman, S.D.; Burton, R.A.; Gilliham, M. Fruit Calcium: Transport and Physiology. Front. Plant Sci. 2016, 7, 569. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, N.K.; White, P.; Broadley, M.; Ramsay, G. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 2011, 107, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Busse, J.S.; Palta, J.P. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: A new concept in potato tuber calcium nutrition. Physiol. Plant. 2006, 128, 313–323. [Google Scholar] [CrossRef]
- Baker, D.A.; Moorby, J. The Transport of Sugar, Water, and Ions into Developing Potato Tubers. Ann. Bot. 1969, 33, 729–741. [Google Scholar] [CrossRef]
- Pelica, J.; Barbosa, S.; Reboredo, F.; Lidon, F.; Pessoa, F.; Calvão, T. The paradigm of high concentration of metals of natural or anthropogenic origin in soils—The case of Neves-Corvo mine area (Southern Portugal). J. Geochem. Explor. 2018, 186, 12–23. [Google Scholar] [CrossRef]
- Reitemeier, R. Soil Potassium. Adv. Agron. 1951, 3, 113–164. [Google Scholar]
- White, P.J.; Karley, A.J. Potassium. In Plant Cell Monographs; Springer: Singapore, 2010; Volume 17, pp. 199–224. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kobayashi, T.; Nozoye, T.; Nishizawa, N.K. Iron transport and its regulation in plants. Free Radic. Biol. Med. 2019, 133, 11–20. [Google Scholar] [CrossRef] [PubMed]
- D’Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Serio, F.; Santamaria, P. Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production. Food Chem. 2016, 213, 149–156. [Google Scholar] [CrossRef]
- Weinl, S.; Held, K.; Schlücking, K.; Steinhorst, L.; Kuhlgert, S.; Hippler, M.; Kudla, J. A plastid protein crucial for Ca 2+ -regulated stomatal responses. New Phytol. 2008, 179, 675–686. [Google Scholar] [CrossRef]
- White, P.J.; Hammond, J.P. Phosphorus nutrition of terrestrial plants. In The Ecophysiology of Plant-Phosphorus Interactions; Springer: Dordrecht, The Netherlands, 2008; pp. 51–81. [Google Scholar]
- Hinsinger, P.; Brauman, A.; Devau, N.; Gérard, F.; Jourdan, C.; Laclau, J.-P.; Le Cadre-Barthélémy, E.; Jaillard, B.; Plassard, C. Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 2011, 348, 29–61. [Google Scholar] [CrossRef]
- Stipp, S.R.; Casarin, V. A importância do enxofre na agricultura brasileira. Inf. Agron. 2010, 129, 14–20. [Google Scholar]
- Rhodes, R.; Miles, N.; Hughes, J.C. Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Res. 2018, 223, 1–11. [Google Scholar] [CrossRef]
- Khan, M.Z.; Akhtar, M.E.; Safdar, M.N.; Mahmood, M.M.; Ahmad, S.; Ahmed, N. Effect of source and level of potash on yield and quality of potato tubers. Pak. J. Bot. 2010, 42, 3137–3145. [Google Scholar]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional Value of Potatoes. Adv. Potato Chem. Technol. 2009, 4, 395–424. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Dev, G. Interaction effect of calcium and sulphur on the growth and nutrient composition of alfalfa (Medicago sativa L. pers.), using35S. Plant Soil 1978, 50, 125–134. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; He, Y. Rapid Screen of the Color and Water Content of Fresh-Cut Potato Tuber Slices Using Hyperspectral Imaging Coupled with Multivariate Analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas-Serrano, A.B.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Colelli, G. Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 2009, 53, 138–144. [Google Scholar] [CrossRef]
Treatments | Ca (%) | P (%) | K (%) | S (%) | Zn (ppm) | Mg (ppm) | |
---|---|---|---|---|---|---|---|
Control | 5.13 ± 0.89 bc | 0.58 ± 0.11 a | 11.0 ± 1.49 a | 1.18 ± 0.14 ab | 33.7 ± 2.20 ab | 4.25 ± 0.28 abc | |
Ca(NO3)2 | 0.5 kg.ha−1 | 5.56 ± 1.14 abc | 0.58 ± 0.06 a | 9.26 ± 0.71 ab | 1.32 ± 0.17 ab | 51.6 ± 3.15 a | 5.25 ± 0.97 abc |
1 kg.ha−1 | 8.41 ± 1.01 ab | 0.53 ± 0.10 a | 9.88 ± 0.77 ab | 1.53 ± 0.13 a | 37.0 ± 1.67 ab | 5.40 ± 0.52 ab | |
2 kg.ha−1 | 8.92 ± 0.46 a | 0.70 ± 0.03 a | 10.1 ± 0.48 ab | 1.46 ± 0.04 a | 37.0 ± 4.05 ab | 7.44 ± 0.59 a | |
4 kg.ha−1 | 5.81 ± 0.13 abc | 0.73 ± 0.07 a | 9.76 ± 0.12 ab | 1.60 ± 0.10 a | 37.1 ± 8.73 ab | 4.12 ± 1.05 abc | |
CaCl2 | 1 kg.ha−1 | 6.80 ± 0.52 abc | 0.63 ± 0.07 a | 9.08 ± 0.56 ab | 1.17 ± 0.07 ab | 20.1 ± 2.43 b | 5.13 ± 0.81 abc |
3 kg.ha−1 | 6.54 ± 0.50 abc | 0.45 ± 0.03 a | 8.75 ± 0.81 ab | 1.13 ± 0.02 ab | 29.8 ± 2.22 b | 3.43 ± 1.12 bc | |
6 kg.ha−1 | 4.82 ± 0.12 c | 0.42 ± 0.04 a | 7.51 ± 0.65 ab | 0.90 ± 0.02 b | 23.3 ± 1.13 b | 1.59 ± 0.35 c | |
12 kg.ha−1 | 7.49 ± 0.89 abc | 0.44 ± 0.05 a | 6.87 ± 0.74 b | 1.13 ± 0.09 ab | 28.4 ± 1.96 b | 3.51 ± 0.61 bc |
Treatments | Ca (%) | P (%) | K (%) | S (%) | |
---|---|---|---|---|---|
Control | 0.122 ± 0.006 cd | 0.204 ± 0.006 abc | 3.36 ± 0.099 ab | 0.173 ± 0.005 ab | |
Ca(NO3)2 | 0.5 kg.ha−1 | 0.143 ± 0.012 abc | 0.218 ± 0.005 ab | 3.45 ± 0.086 a | 0.186 ± 0.005 a |
1 kg.ha−1 | 0.159 ± 0.005 ab | 0.181 ± 0.004 c | 3.35 ± 0.025 ab | 0.182 ± 0.008 a | |
2 kg.ha−1 | 0.130 ± 0.007 bcd | 0.205 ± 0.009 abc | 3.22 ± 0.060 ab | 0.180 ± 0.002 ab | |
4 kg.ha−1 | 0.136 ± 0.007 abcd | 0.185 ± 0.006 bc | 3.31 ± 0.238 ab | 0.179 ± 0.006 ab | |
CaCl2 | 1 kg.ha−1 | 0.120 ± 0.007 cd | 0.186 ± 0.011 bc | 2.83 ± 0.086 b | 0.157 ± 0.006 ab |
3 kg.ha−1 | 0.113 ± 0.000 cd | 0.176 ± 0.006 c | 3.27 ± 0.067 ab | 0.148 ± 0.004 b | |
6 kg.ha−1 | 0.107 ± 0.006 d | 0.170 ± 0.002 c | 3.16 ± 0.035 ab | 0.163 ± 0.004 ab | |
12 kg.ha−1 | 0.165 ± 0.001 a | 0.237 ± 0.011 a | 3.58 ± 0.157 a | 0.188 ± 0.013 a |
Treatments | Colorimetric Parameters | |||
---|---|---|---|---|
L | a* | b* | ||
Control | 64.5 ± 0.53 a | 1.42 ± 0.02 b | 12.7 ± 0.09 ab | |
Ca(NO3)2 | 0.5 kg.ha−1 | 63.6 ± 1.56 ab | 1.77 ± 0.07 ab | 12.4 ± 0.33 ab |
1 kg.ha−1 | 62.4 ± 0.98 ab | 1.40 ± 0.08 b | 12.3 ± 0.20 ab | |
2 kg.ha−1 | 58.1 ± 0.68 b | 2.11 ± 0.10 a | 11.7 ± 0.12 b | |
4 kg.ha−1 | 66.3 ± 0.14 a | 1.73 ± 0.13 ab | 13.3 ± 0.28 a | |
CaCl2 | 1 kg.ha−1 | 64.5 ± 1.87 a | 1.89 ± 0.02 a | 12.5 ± 0.51 ab |
3 kg.ha−1 | 63.9 ± 0.63 ab | 1.79 ± 0.06 ab | 13.1 ± 0.10 a | |
6 kg.ha−1 | 66.5 ± 0.93 a | 1.44 ± 0.12 b | 12.9 ± 0.19 ab | |
12 kg.ha−1 | 64.4 ± 2.10 a | 1.77 ± 0.02 ab | 13.5 ± 0.38 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.R.F.; Marques, A.C.; Pessoa, C.C.; Daccak, D.; Luís, I.C.; Silva, M.M.; Simões, M.; Reboredo, F.H.; Pessoa, M.F.; Legoinha, P.; et al. Natural Enrichment of Solanum tuberosum L. with Calcium—Monitorization of Mineral Interactions in Plant Tissues. Biol. Life Sci. Forum 2022, 11, 28. https://doi.org/10.3390/IECPS2021-11972
Coelho ARF, Marques AC, Pessoa CC, Daccak D, Luís IC, Silva MM, Simões M, Reboredo FH, Pessoa MF, Legoinha P, et al. Natural Enrichment of Solanum tuberosum L. with Calcium—Monitorization of Mineral Interactions in Plant Tissues. Biology and Life Sciences Forum. 2022; 11(1):28. https://doi.org/10.3390/IECPS2021-11972
Chicago/Turabian StyleCoelho, Ana Rita F., Ana Coelho Marques, Cláudia Campos Pessoa, Diana Daccak, Inês Carmo Luís, Maria Manuela Silva, Manuela Simões, Fernando H. Reboredo, Maria F. Pessoa, Paulo Legoinha, and et al. 2022. "Natural Enrichment of Solanum tuberosum L. with Calcium—Monitorization of Mineral Interactions in Plant Tissues" Biology and Life Sciences Forum 11, no. 1: 28. https://doi.org/10.3390/IECPS2021-11972
APA StyleCoelho, A. R. F., Marques, A. C., Pessoa, C. C., Daccak, D., Luís, I. C., Silva, M. M., Simões, M., Reboredo, F. H., Pessoa, M. F., Legoinha, P., Ramalho, J. C., Campos, P. S., Pais, I. P., Semedo, J. N., & Lidon, F. C. (2022). Natural Enrichment of Solanum tuberosum L. with Calcium—Monitorization of Mineral Interactions in Plant Tissues. Biology and Life Sciences Forum, 11(1), 28. https://doi.org/10.3390/IECPS2021-11972