The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Male Soccer Players
Abstract
1. Introduction
2. Methods
2.1. Experimental Approach to the Problem
Participants
2.2. Linear Sprint Speed Time
2.3. The 505 Change in Direction Test
2.4. Countermovement Jump
2.5. Standing Long Jump
2.6. 20 cm Drop Jump
2.7. Repeated Sprint Ability Test
2.8. The Eccentric Training Program
2.9. Statistical Analyses
3. Results
3.1. Linear Sprint-Time
3.2. Jumping Performance
3.3. Change in Direction Test
3.4. Repeated Sprint Ability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkader, M., Hammami, R., Drury, B., Clark, N., Sandercock, G., Shaw, I., & Moran, J. A. (2022). Randomised controlled trial of 1- versus 2-day per week formats of Nordic hamstring training on explosive athletic tasks in prepubertal soccer players. Journal of Sports Sciences, 40(19), 2173–2181. [Google Scholar] [CrossRef]
- Alonso Fernández, D., Fernández Rodríguez, R., & Abalo Nuñez, M. D. R. (2019). Changes in rectus femoris architecture induced by the reverse nordic hamstring exercises. Journal of Sports Medicine and Physical Fitness, 59, 640–647. [Google Scholar] [CrossRef]
- Baroni, B. M., Pinto, R. S., Herzog, W., & Vaz, M. A. (2015). Eccentric resistance training of the knee extensor muscle: Training programs and neuromuscular adaptations. Isokinetics and Exercise Science, 23(3), 183–198. [Google Scholar] [CrossRef]
- Bouguezzi, R., Negra, Y., Sammoud, S., & Chaabene, H. (2025). The effects of volume-matched one-day versus two-day eccentric training on physical performance in male youth soccer players. Journal of Functional Morphology and Kinesiology, 10(3), 260. [Google Scholar] [CrossRef]
- Bouguezzi, R., Sammoud, S., Negra, Y., Hachana, Y., & Chaabene, H. (2024). The effects of reverse Nordic exercise training on measures of physical fitness in youth male karate athletes. Journal of Functional Morphology and Kinesiology, 9(4), 265. [Google Scholar] [CrossRef]
- Brughelli, M., Mendiguchia, J., Nosaka, K., Idoate, F., Los Arcos, A., & Cronin, J. (2010). Effects of eccentric exercise on optimum length of the knee flexors and extensors during the preseason in professional soccer players. Physical Therapy in Sport, 11(2), 50–55. [Google Scholar] [CrossRef]
- Chaabene, H., Markov, A., Prieske, O., Moran, J., Behrens, M., Negra, Y., Ramirez-Campillo, R., Koch, U., & Mkaouer, B. (2022). Effect of flywheel versus traditional resistance training on change of direction performance in male athletes: A systematic review with meta-analysis. International Journal of Environmental Research and Public Health, 19(12), 7061. [Google Scholar] [CrossRef]
- Chaabene, H., Prieske, O., Negra, Y., & Granacher, U. (2018). Change of direction speed: Toward a strength training approach with accentuated eccentric muscle actions. Sports Medicine, 48, 1773–1779. [Google Scholar] [CrossRef]
- Coratella, G., Beato, M., Bertinato, L., Milanese, C., Venturelli, M., & Schena, F. (2022). Including the eccentric phase in resistance training to counteract the effects of detraining in women: A randomized controlled trial. Journal of Strength and Conditioning Research, 36(11), 3023–3031. [Google Scholar] [CrossRef]
- Dos’Santos, T., Thomas, C., Comfort, P., & Jones, P. A. (2018). The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. Sports Medicine, 48, 2235–2253. [Google Scholar] [CrossRef]
- Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Chronic adaptations to eccentric training: A systematic review. Sports Medicine, 47, 917–941. [Google Scholar] [CrossRef]
- Faude, O., Koch, T., & Meyer, T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. Journal of Sports Sciences, 30(7), 625–631. [Google Scholar] [CrossRef]
- Fiorilli, G., Mariano, I., Luliano, E., Giombini, A., Ciccarelli, A., Buonsenso, A., Calcagano, G., & di Cagno, A. (2020). Isoinertial eccentric-overload training in young soccer players: Effects on strength, sprint, change of direction, agility and soccer shooting precision. Journal of Sports Science and Medicine, 19(1), 213–223. [Google Scholar]
- Hessel, A. L., Lindstedt, S. L., & Nishikawa, K. C. (2017). Physiological mechanisms of eccentric contraction and its applications: A role for the giant titin protein. Frontiers in Physiology, 8, 70. [Google Scholar] [CrossRef]
- Hody, S., Croisier, J.-L., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric muscle contractions: Risks and benefits. Frontiers in Physiology, 10, 536. [Google Scholar] [CrossRef]
- Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 3–13. [Google Scholar] [CrossRef]
- Hulse, M. A., Morris, J. G., Hawkins, R. D., Hodson, A., Nevill, A. M., & Nevill, M. E. (2013). A field-test battery for elite, young soccer players. International Journal of Sports Medicine, 34(4), 302–311. [Google Scholar] [CrossRef]
- Krommes, K., Peterson, J., Nielson, M. B., Aagaard, P., Hôlmich, P., & Thorborg, K. (2017). Sprint and jump performance in elite male soccer players following a 10-week Nordic hamstring exercise protocol: A randomised pilot study. BMC Research Notes, 10(1), 669. [Google Scholar] [CrossRef]
- Lloyd, R. S., Cronin, J. B., Faigenbaum, A. D., Haff, G. G., Howard, R., Kraemer, W. J., Micheli, L. J., Myer, G. D., & Oliver, J. L. (2016). National Strength and Conditioning Association position statement on long-term athletic development. Journal of Strength and Conditioning Research, 30, 1491–1509. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S., García-López, D., Fernandez-Gonzalo, R., Moreira, O. C., González-Gallego, J., & de Paz, J. A. (2017). Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: A systematic review and meta-analysis. Journal of Science and Medicine in Sport, 20(10), 943–951. [Google Scholar] [CrossRef]
- Mirkov, D. M., Kukolj, M., Ugarkovic, D., Koprivica, V. J., & Jaric, S. (2010). Development of anthropometric and physical performance profiles of young elite male soccer players: A longitudinal study. Journal of Strength and Conditioning Research, 24, 2677–2682. [Google Scholar] [CrossRef]
- Moore, S. A., McKay, H. A., Macdonald, H., Nettlefold, L., Baxter-Jones, A. D., Cameron, N., & Brasher, P. M. (2015). Enhancing a somatic maturity prediction model. Medicine & Science in Sports & Exercise, 47, 1755–1764. [Google Scholar] [CrossRef]
- Moran, J., Vali, N., Drury, B., Hammami, R., Tallent, J., Chaabene, H., & Ramirez-Campillo, R. (2022). The effect of volume equated 1-versus 2-day formats of Nordic hamstring exercise training on fitness in youth soccer players: A randomised controlled trial. PLoS ONE, 17(12), e0277437. [Google Scholar] [CrossRef]
- Negra, Y., Sammoud, S., Bouguezzi, R., Moran, J., & Chaabene, H. (2024). Effects of a horizontal speed deceleration training programme on measures of physical fitness in youth male handball players. Journal of Sport Sciences, 42(7), 638–645. [Google Scholar] [CrossRef]
- Nikolaidis, P. T., Knechtle, B., Clemente, F. M., & Torres-Luque, G. (2016). Reference values for sprint performance in male soccer players aged 9–35 years old. Biomedical Human Kinetics, 8, 103–112. [Google Scholar] [CrossRef]
- Padulo, J., Tabben, M., Ardigò, L. P., Ionel, M., Popa, C., Gevat, C., Zagatoo, A. M., & Della Iacono, I. (2015). Repeated sprint ability related to recovery time in young soccer players. Research in Sports Medicine, 23, 412–423. [Google Scholar] [CrossRef]
- Prieske, O., Chaabene, H., Puta, C., Behm, D. G., Büsch, D., & Granacher, U. (2019). Effects of drop height on jump performance in male and female elite adolescent handball players. International Journal of Sports Physiology and Performance, 14(5), 674–680. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R., Gentil, P., Negra, Y., Grgic, J., & Girard, O. (2021). Effects of plyometric jump training on repeated sprint ability in athletes: A systematic review and meta-analysis. Sports Medicine, 51, 2165–2179. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R., Martínez, M., Correa-Bautista, J. E., Lobelo, F., Izquierdo, M., Rodríguez-Rodríguez, F., & Cristi-Montero, C. (2017). Normative reference of standing long jump for Colombian schoolchildren aged 9–17.9 years: The FUPRECOL study. Journal of Strength and Conditioning Research, 31(8), 2083–2090. [Google Scholar] [CrossRef]
- Roig, M., O’Brien, K., Kirk, G., Murray, R., McKinnon, P., Shadgan, B., & Reid, W. (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: A systematic review with meta-analysis. British Journal of Sports Medicine, 43, 556–568. [Google Scholar] [CrossRef]
- Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ, 340, c332. [Google Scholar] [CrossRef]
- Stolen, T., Chamari, K., Castagna, C., & Wisloff, U. (2005). Physiology of soccer: An update. Sports Medicine, 35, 501–536. [Google Scholar] [CrossRef]
- Sugiura, Y., Saito, T., Sakuraba, K., Sakuma, K., & Suzuki, E. (2008). Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters. The Journal of Orthopaedic and Sports Physical Therapy, 38(8), 457–464. [Google Scholar] [CrossRef]
- Taylor, J., Macpherson, T., Spears, I., & Weston, M. (2015). The effects of repeated-sprint training on field-based fitness measures: A meta-analysis of controlled and non-controlled trials. Sports Medicine, 45, 881–891. [Google Scholar] [CrossRef]
- Vogt, M., & Hoppeler, H. (2014). Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. Journal of Applied Physiology, 116(11), 1446–1454. [Google Scholar] [CrossRef]
- Weldon, A., Dos’Santos, T., Bright, T. E., Sapstead, G. W., Beato, M., & Lincoln, M. A. (2025). The reverse Nordic. Strength & Conditioning Journal, 47(3), 364–379. [Google Scholar] [CrossRef]
RNET Group (n = 19) | CG (n = 16) | |
---|---|---|
Age (years) | 16.39 ± 0.46 | 16.53 ± 0.48 |
Height (cm) | 176.21 ± 6.46 | 175.94 ± 5.16 |
Body mass (kg) | 63.42 ± 6.10 | 65.70 ± 7.55 |
Maturity offset (years) * | 2.43 ± 0.47 | 2.51 ± 0.40 |
Playing experience (years) | 6.1 ± 1.7 | 5.9 ± 1.9 |
Week | Session per Week | Sets | Reps | Eccentric Phase Duration (s) | Work-to-Rest Ratio | Recommendation |
---|---|---|---|---|---|---|
1 | 2 | 2 | 6 | 3–5 | ~1–10 | Ensure smooth, controlled movement with emphasis on knee and hip alignment. |
2 | 2 | 4 | 6 | 3–5 | ~1–10 | |
3 | 2 | 4 | 6 | 3–5 | ~1–10 | Maintain control and form while progressively increasing the range of motion |
4 | 2 | 4 | 8 | 3–5 | ~1–10 | |
5 | 2 | 4 | 10 | 3–5 | ~1–10 | Increase the range of motion while maintaining proper knee tracking |
6 | 2 | 4 | 10 | 3–5 | ~1–10 | |
7 | 2 | 4 | 10 | 3–5 | ~1–10 | Full range of motion with good technique |
8 | 2 | 4 | 10 | 3–5 | ~1–10 |
RNET (n = 19) | CG (n = 16) | ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pretest | Posttest | Pretest | Posttest | p-Value (ES) | ||||||||
M | SD | M | SD | Δ | M | SD | M | SD | Δ | Time | Group × Time | |
Linear sprint speed | ||||||||||||
5 m sprint (s) | 1.17 | 0.06 | 1.06 | 0.08 | 9.10 | 1.18 | 0.09 | 1.15 | 0.10 | 2.69 | <0.001 (1.35) | <0.05 (0.73) |
10 m sprint (s) | 1.94 | 0.07 | 1.82 | 0.10 | 6.40 | 1.90 | 0.09 | 1.86 | 0.08 | 2.04 | <0.001(1.36) | <0.05 (0.71) |
20 m sprint (s) | 3.29 | 0.15 | 3.16 | 0.12 | 4.10 | 3.18 | 0.12 | 3.16 | 0.22 | 0.42 | <0.01(0.85) | <0.05 (0.70) |
Change in direction speed | ||||||||||||
505-CiD speed test (s) | 2.44 | 0.11 | 2.35 | 0.09 | 3.62 | 2.46 | 0.09 | 2.45 | 0.10 | 0.32 | <0.01 (1.20) | <0.01 (1.01) |
Muscle Power | ||||||||||||
CMJ (cm) | 28.94 | 4.31 | 31.67 | 3.94 | 9.44 | 33.82 | 4.18 | 34.81 | 4.63 | 2.92 | <0.001 (1.73) | <0.05 (0.81) |
SLJ (cm) | 1.85 | 0.19 | 2.04 | 0.12 | 10.21 | 1.91 | 0.20 | 1.92 | 0.17 | 0.62 | <0.001 (1.55) | <0.001 (1.37) |
DJ-20 (cm) | 27.92 | 5.58 | 30.27 | 3.76 | 8.45 | 32.99 | 4.83 | 32.84 | 4.77 | 0.45 | 0.08(0.63) | <0.05 (0.71) |
Repeated sprint ability | ||||||||||||
RSAbest (s) | 7.22 | 0.47 | 7.22 | 0.27 | 0.01 | 7.12 | 0.17 | 7.19 | 0.17 | 0.78 | >0.05 (0.22) | >0.05 (0.22) |
RSAmean (s) | 7.52 | 0.29 | 7.47 | 0.29 | 0.68 | 7.40 | 0.23 | 7.37 | 0.35 | 0.37 | >0.05 (0.36) | >0.05 (0.11) |
RSAtot (s) | 45.10 | 1.73 | 44.79 | 1.73 | 0.68 | 44.37 | 1.38 | 44.21 | 2.12 | 0.37 | >0.05 (0.36) | >0.05 (0.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueslati, A.; Negra, Y.; Sammoud, S.; Bouguezzi, R.; Markov, A.; Müller, P.; Chaabene, H.; Hachana, Y. The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Male Soccer Players. Youth 2025, 5, 104. https://doi.org/10.3390/youth5040104
Oueslati A, Negra Y, Sammoud S, Bouguezzi R, Markov A, Müller P, Chaabene H, Hachana Y. The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Male Soccer Players. Youth. 2025; 5(4):104. https://doi.org/10.3390/youth5040104
Chicago/Turabian StyleOueslati, Aya, Yassine Negra, Senda Sammoud, Raja Bouguezzi, Adrian Markov, Patrick Müller, Helmi Chaabene, and Younés Hachana. 2025. "The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Male Soccer Players" Youth 5, no. 4: 104. https://doi.org/10.3390/youth5040104
APA StyleOueslati, A., Negra, Y., Sammoud, S., Bouguezzi, R., Markov, A., Müller, P., Chaabene, H., & Hachana, Y. (2025). The Effects of Reverse Nordic Exercise Training on Measures of Physical Fitness in Youth Male Soccer Players. Youth, 5(4), 104. https://doi.org/10.3390/youth5040104