School-Based Exercise Programs for Promoting Musculoskeletal Fitness in Children Aged 6 to 10
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Identification
2.2. Inclusion Criteria
2.3. Risk of Bias Assessment
3. Results
3.1. Quality of the Studies
3.2. Selection and Characteristics of Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Committee on Fitness Measures and Health Outcomes in Youth; Food and Nutrition Board; Institute of Medicine. Fitness Measures and Health Outcomes in Youth; Pate, R., Oria, M., Pillsbury, L., Youth, C., Eds.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Grontved, A.; Ried-Larsen, M.; Moller, N.C.; Kristensen, P.L.; Froberg, K.; Brage, S.; Andersen, L.B. Muscle strength in youth and cardiovascular risk in young adulthood (the European Youth Heart Study). Br. J. Sports Med. 2015, 49, 90–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Gheiratmand, R.; Ardalan, G.; Adeli, K.; Mehdi Gouya, M.; Mohammad Razaghi, E.; Majdzadeh, R.; Delavari, A.; Shariatinejad, K.; Motaghian, M.; et al. Association of anthropometric indices with cardiovascular disease risk factors among children and adolescents: CASPIAN Study. Int. J. Cardiol. 2007, 117, 340–348. [Google Scholar] [CrossRef]
- Runhaar, J.; Collard, D.C.M.; Singh, A.S.; Kemper, H.C.G.; van Mechelen, W.; Chinapaw, M. Motor fitness in Dutch youth: Differences over a 26-year period (1980–2006). J. Sci. Med. Sport 2010, 13, 323–328. [Google Scholar] [CrossRef]
- Emeljanovas, A.; Mieziene, B.; Cesnaitiene, V.J.; Fjortoft, I.; Kjønniksen, L. Physical Fitness and Anthropometric Values Among Lithuanian Primary School Children: Population-Based Cross-Sectional Study. J. Strength Cond. Res. 2020, 34, 414–421. [Google Scholar] [CrossRef]
- Detter, F.; Nilsson, J.A.; Karlsson, C.; Dencker, M.; Rosengren, B.E.; Karlsson, M.K. A 3-year school-based exercise intervention improves muscle strength—A prospective controlled population-based study in 223 children. BMC Musculoskelet. Disord. 2014, 15, 353. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.J.; Rollo, S.; Sampson, M.; Magnussen, C.G.; Lang, J.J.; Tremblay, M.S.; Tomkinson, G.R. Health-Related Criterion-Referenced Cut-Points for Musculoskeletal Fitness Among Youth: A Systematic Review. Sports Med. 2021, 51, 2629–2646. [Google Scholar] [CrossRef]
- Krochmal, P.; Cooper, D.M.; Radom-Aizik, S.; Lu, K.D. US School-Based Physical Fitness Assessments and Data Dissemination. J. Sch. Health 2021, 91, 722–729. [Google Scholar] [CrossRef]
- Kriemler, S.; Meyer, U.; Martin, E.; van Sluijs, E.M.F.; Andersen, L.B.; Martin, B.W. Effect of school-based interventions on physical activity and fitness in children and adolescents: A review of reviews and systematic update. Br. J. Sports Med. 2011, 45, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Yuksel, H.S.; Şahin, F.N.; Maksimovic, N.; Drid, P.; Bianco, A. School-based intervention programs for preventing obesity and promoting physical activity and fitness: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 347. [Google Scholar] [CrossRef] [Green Version]
- Hynynen, S.T.; Van Stralen, M.M.; Sniehotta, F.F.; Araújo-Soares, V.; Hardeman, W.; Chinapaw, M.J.M.; Vasankari, T.; Hankonen, N. A systematic review of school-based interventions targeting physical activity and sedentary behaviour among older adolescents. Int. Rev. Sport Exerc. Psychol. 2016, 9, 22–44. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.S.; Tidwell, D.K.; Hall, M.E.; Lee, M.L.; Briley, C.A.; Hunt, B.P. A meta-analysis of school-based obesity prevention programs demonstrates limited efficacy of decreasing childhood obesity. Nutr. Res. 2015, 35, 229–240. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Chiodera, P.; Volta, E.; Gobbi, G.; Milioli, M.A.; Mirandola, P.; Bonetti, A.; Delsignore, R.; Bernasconi, S.; Anedda, A.; Vitale, M. Specifically designed physical exercise programs improve children’s motor abilities. Scand. J. Med. Sci. Sports 2008, 18, 179–187. [Google Scholar] [CrossRef]
- Weber, K.S.; Spörkel, O.; Mertens, M.; Freese, A.; Strassburger, K.; Kemper, B.; Bachmann, C.; Diehlmann, K.; Stemper, T.; Buyken, A.E.; et al. Positive Effects of Promoting Physical Activity and Balanced Diets in a Primary School Setting with a High Proportion of Migrant School Children. Exp. Clin. Endocrinol. Diabetes 2017, 125, 554–562. [Google Scholar] [CrossRef]
- Sollerhed, A.C.; Ejlertsson, G. Physical benefits of expanded physical education in primary school: Findings from a 3-year intervention study in Sweden. Scand. J. Med. Sci. Sports 2008, 18, 102–107. [Google Scholar] [CrossRef]
- Serbescu, C.; Flora, D.; Hantiu, I.; Greene, D.; Benhamou, C.L.; Courteix, D. Effect of a six-month training programme on the physical capacities of Romanian schoolchildren. Acta Paediatr. Int. J. Paediatr. 2006, 95, 1258–1265. [Google Scholar] [CrossRef]
- Stenevi-Lundgren, S.; Daly, R.M.; Linden, C.; Gardsell, P.; Karlsson, M.K. Effects of a daily school based physical activity intervention program on muscle development in prepubertal girls. Eur. J. Appl. Physiol. 2009, 105, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandercock, G.R.H.; Cohen, D.D.; Griffin, M. Evaluation of a multicomponent intervention to improve weight status and fitness in children: Upstarts. Pediatr. Int. 2012, 54, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vizcaíno, V.; Soriano-Cano, A.; Garrido-Miguel, M.; Cavero-Redondo, I.; de Medio, E.P.; Madrid, V.M.; Martínez-Hortelano, J.A.; Berlanga-Macías, C.; Sánchez-López, M.; Martinez-Vizcaino, V.; et al. The effectiveness of a high-intensity interval games intervention in schoolchildren: A cluster-randomized trial. Scand. J. Med. Sci. Sports 2022, 32, 765–781. [Google Scholar] [CrossRef]
- Siegrist, M.; Lammel, C.; Haller, B.; Christle, J.; Halle, M. Effects of a physical education program on physical activity, fitness, and health in children: The JuvenTUM project. Scand. J. Med. Sci. Sports 2013, 23, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nobre, G.G.; De Almeida, M.B.; Nobre, I.G.; Dos Santos, F.K.; Brinco, R.A.; Arruda-Lima, T.R.; De-Vasconcelos, K.L.; De-Lima, J.G.; Borba-Neto, M.E.; Damasceno-Rodrigues, E.M.; et al. Twelve weeks of plyometric training improves motor performance of 7- to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 2017, 31, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.N.; Nielsen, C.M.; Orntoft, C.; Randers, M.B.; Helge, E.W.; Madsen, M.; Manniche, V.; Hansen, L.; Hansen, P.R.; Bangsbo, J.; et al. Fitness Effects of 10-Month Frequent Low-Volume Ball Game Training or Interval Running for 8–10-Year-Old School Children. BioMed Res. Int. 2017, 2017, 2719752. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.N.; Nielsen, C.M.; Helge, E.W.; Madsen, M.; Manniche, V.; Hansen, L.; Hansen, P.R.; Bangsbo, J.; Krustrup, P. Positive effects on bone mineralisation and muscular fitness after 10 months of intense school-based physical training for children aged 8-10 years: The FIT FIRST randomised controlled trial. Br. J. Sports Med. 2018, 52, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Mačak, D.; Popović, B.; Babić, N.; Cadenas-Sanchez, C.; Madić, D.M.; Trajković, N. The effects of daily physical activity intervention on physical fitness in preschool children. J. Sports Sci. 2022, 40, 146–155. [Google Scholar] [CrossRef]
- Comeras-Chueca, C.; Villalba-Heredia, L.; Perez-Lasierra, J.L.; Marín-Puyalto, J.; Lozano-Berges, G.; Matute-Llorente, Á.; Vicente-Rodríguez, G.; Gonzalez-Aguero, A.; Casajús, J.A. Active Video Games Improve Muscular Fitness and Motor Skills in Children with Overweight or Obesity. Int. J. Environ. Res. Public Health 2022, 19, 2642. [Google Scholar] [CrossRef]
- Thivel, D.; Isacco, L.; Lazaar, N.; Aucouturier, J.; Ratel, S.; Doré, E.; Meyer, M.; Duché, P. Effect of a 6-month school-based physical activity program on body composition and physical fitness in lean and obese schoolchildren. Eur. J. Pediatr. 2011, 170, 1435–1443. [Google Scholar] [CrossRef]
- Siegrist, M.; Hanssen, H.; Lammel, C.; Haller, B.; Halle, M. A cluster randomised school-based lifestyle intervention programme for the prevention of childhood obesity and related early cardiovascular disease (JuvenTUM 3). BMC Public Health 2011, 11, 258. [Google Scholar] [CrossRef] [Green Version]
- Strotmeyer, A.; Kehne, M.; Herrmann, C. Effects of an intervention for promoting basic motor competencies in middle childhood. Int. J. Environ. Res. Public Health 2021, 18, 7343. [Google Scholar] [CrossRef]
- Ervin, R.B.; Fryar, C.D.; Wang, C.Y.; Miller, I.M.; Ogden, C.L. Strength and Body Weight in US Children and Adolescents. Pediatrics 2014, 134, e782–e789. [Google Scholar] [CrossRef] [Green Version]
- Marta, C.; Marinho, D.A.; Barbosa, T.M.; Izquierdo, M.; Marques, M.C. Effects of concurrent training on explosive strength and VO2max in prepubescent children. Int. J. Sports Med. 2013, 34, 888–896. [Google Scholar] [CrossRef]
Search 1 | Search 2 | Search 3 | Filters |
---|---|---|---|
“school-based” OR “school program” | “physical fitness” OR “motor abilities” OR “physical performance” OR “musculoskeletal fitness” OR strength OR exercise | 6 to 10 OR 6–10 | Child: 6–12 years |
Criterion | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ∑ |
Serbescu et al. (2006) | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
Sollerhed et al. (2008) | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Chiodera et al. (2008) | Y | N | N | N | N | N | N | N | Y | Y | Y | 3 |
Stenevi-Lundgren et al. (2009) | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Thivel et al. (2011) | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
Siegrist et al. (2011) | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
Sandercock et al. (2012) | Y | N | N | N | N | N | N | Y | Y | N | Y | 3 |
Detter et al. (2014) | Y | N | N | N | N | N | N | Y | Y | Y | Y | 4 |
Nobre et al. (2016) | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
Larsen et al. (2017) | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | 9 |
Weber et al. (2017) | Y | N | N | Y | N | N | N | Y | Y | Y | Y | 5 |
Larsen et al. (2018) | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | 9 |
Strotmeyer et al. (2021) | Y | Y | Y | N | N | N | N | Y | Y | Y | Y | 6 |
Mačak et al. (2021) | Y | Y | Y | N | Y | N | N | N | Y | Y | Y | 6 |
Martinez-Vizcaiano et al. (2022) | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | 9 |
Comeras-Chueca (2022) | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
First Author and Year of Publication | Sample of Participants | PF | Type for Intervention | Duration of Intervention | Results | |
---|---|---|---|---|---|---|
Number | Age | Months | ||||
Serbescu et al. (2006) | N-370 M-178 F-192 | 9.5 ± 0.8 9.6 ± 0.4 | FL, PLT, SaR, SBJ, SUP, BAH, | extracurricular training program, involving moderate-intensity-impact exercises | 6 | PLT * M; PLT * M SBJ * M; SBJ * M SUP * M; SUP ↑ M; BAH ↑ M; SBJ * F; PLT ↑ F; SAR ↑ F; SBJ ↑ F; SUP ↑ F; |
Sollerhed et al. (2008) | N-132 M-73 F-59 | 6–9 | SBJ, SUP, HG, BAH, B, PLT, BMI | school-based expanded physical education | 36 | B ↑; PLT ↑; BMI ↑ |
Chiodera et al. (2008) | N-4500 M-2207 F-2293 | 6–10 | BMI, S, TF, SBJ, SS, HCt, | professionally designed physical education program | 12 | BMI1st ↑ M; BMI4th ↑ M; S ↑ M; SF ↑; SBJ ↑ M; SBJ ↑ F; HCt ↑ M; HCtF ↑ |
Stenevi-Lundgren et al. (2009) | F-103 | 7–9 | LM, FM; PT, VJ, | daily PA | 12 | PT ↑; VJ ↑ |
Thivel et al. (2011) | N-457 | 6–10 | BMI, FFM, CPP | AL 2/w | 6 | BMI ↑; FFM ↑; CPP ↑ |
Siegrist et al. (2011) | N-724 | 8.4 ± 0.7 | BMI, WC | AL/m | 12 | WC ↑ |
Sandercock et al. (2012) | N-115 | 10.1 ± 0.3 | BMI, HG, VJ | CSCP | 5 | BMI ↑; HG ↑; |
Detter et al. (2014) | N-223 M-130 F-93 | 6–9 | CKS, LM, FM | Daily PA | 36 | CKS ↑ M; CKS ↑ F; LM ↑ F; FM ↑ F |
Nobre et al. (2016) | N-59 | 7–9 | HG, SBJ, SUP, SaR, 20 m, ST | PT | 3 | HG ↑; SaR ↑; SUP ↑; SBJ ↑; ST ↑ |
Larsen et al. (2017) | N-239 | 8–10 | FL, SBJ, 20 m | SSG, IR | 10 | IR20m ↑ |
Weber et al. (2017) | N-70 | 9.0 ± 0.7 | 10 m, MBT, SBJ, SUP, SaR | AL 2/w | 10 | SBJ ↑; SUP ↑; SaR ↑; |
Larsen et al. (2018) | N-295 | 8–10 | FL, SBJ, 20 m | CST & SSG | 10 | FL ↑; SBJ ↑ |
Strotmeyer et al. (2021) | N-200 | 6–10 | B, J, R | MG 45 min | 7 | B ↑; J ↑; R ↑ |
Mačak et al. (2021) | N-164 M-83 F-81 | 6–7 | HG, SBJ, SUP, SaR | Daily PA | 6 | HG ↑; SUP ↑; SBJM ↑ |
Martinez-Vizcaino et al. (2022) | N-562 | 9.89 ± 0.71 | WC, FM, BMI, VAGI, SaR, HG, SBJ | HIIT | 9 | SBJ ↑ F; SBJ ↑ M |
Comeras-Chueca (2022) | N-29 M-16 F-13 | 10.07 ± 0.84 | IKS, HG, VJ, LM | AVG | 5 | IKS ↑; HG ↑; VJ ↑; LM ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanković, D.; Pivač, S.; Antonijević, M.; Pekas, D.; Trajković, N. School-Based Exercise Programs for Promoting Musculoskeletal Fitness in Children Aged 6 to 10. Youth 2022, 2, 309-317. https://doi.org/10.3390/youth2030023
Stanković D, Pivač S, Antonijević M, Pekas D, Trajković N. School-Based Exercise Programs for Promoting Musculoskeletal Fitness in Children Aged 6 to 10. Youth. 2022; 2(3):309-317. https://doi.org/10.3390/youth2030023
Chicago/Turabian StyleStanković, Dušan, Stefan Pivač, Maša Antonijević, Damir Pekas, and Nebojša Trajković. 2022. "School-Based Exercise Programs for Promoting Musculoskeletal Fitness in Children Aged 6 to 10" Youth 2, no. 3: 309-317. https://doi.org/10.3390/youth2030023
APA StyleStanković, D., Pivač, S., Antonijević, M., Pekas, D., & Trajković, N. (2022). School-Based Exercise Programs for Promoting Musculoskeletal Fitness in Children Aged 6 to 10. Youth, 2(3), 309-317. https://doi.org/10.3390/youth2030023