Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of the Absorber Layer
3.1.1. Impact of the Thickness of the Absorber Layer
3.1.2. Impact of the Doping of the Absorber Layer
3.1.3. Impact of the Defect Densities of the Absorber Layer
3.2. Impact of the Thickness and Doping of the HTL Layer
3.3. Impact of the Back Contact Metal
3.4. Impact of the Shunt and Series Resistances
3.5. Impact of the Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapim, A.D.; Nangmetio, C.A.; Kuatche, N.J. Computational improvement of the performance of thermoelectric element (Generator and Cooler) using an external magnetic field. J. Electron. Mater. 2023, 52, 951–959. [Google Scholar] [CrossRef]
- Kumar, A.; Khan, M.Z.U.; Pandey, B. Wind Energy: A Review Paper. Gyancity J. Eng. Technol. 2018, 4, 29–37. [Google Scholar] [CrossRef]
- Pelap, F.B.; Konga, E.T.; Kapim, K.A.D. Numerical Optimization of a Tandem Solar Cell based on InxGa1-xN. J. Ren. Energy 2021, 24, 25–39. [Google Scholar] [CrossRef]
- Kapim, K.A.D.; Konga, E.; Pelap, F.B. Contribution of a non-uniform magnetic field on the electric power of a photovoltaic panel. J. Energy Technol. Policy 2020, 10, 16–29. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Choy, W.C. Efficient interconnection in perovskite tandem solar cells. Small Methods 2020, 4, 2000093. [Google Scholar] [CrossRef]
- Han, Q.; Bae, S.H.; Sun, P.; Hsieh, Y.T.; Yang, Y.M.; Rim, Y.S.; Zhao, H.; Chen, Q.; Shi, W.; Li, G.; et al. Single crystal formamidinium lead iodide (FAPbI3): Insight into the structural, Optical and Electrical Properties. Adv. Mater. 2016, 28, 2253–2258. [Google Scholar] [CrossRef]
- Mu, C.; Pan, J.; Feng, S.; Li, Q.; Xu, D. Quantitative doping of chlorine in formamidinium lead trihalide (FAPbI3-xClx) for planar hetero-junction perovskite solar cells. Adv. Energy Mater. 2017, 7, 1601297. [Google Scholar] [CrossRef]
- Wei, Q.; Zi, W.; Yang, Z.; Yang, D. Photoelectric performance and stability comparison of MAPbI3 and FAPbI3 perovskite solar cells. Sol. Energy 2018, 174, 933–939. [Google Scholar] [CrossRef]
- Zhang, Y.; Grancini, G.; Feng, Y.; Asiri, A.M.; Nazeeruddin, M.K. Optimization of table quasi-cubic FAxMA1–xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2017, 2, 802–806. [Google Scholar] [CrossRef]
- Ahmed, A.; Riaz, K.; Mehmood, H.; Tauqeer, T.; Ahmad, Z. Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing diferent ETL materials through conduction band offset engineering. Opt. Mater. 2021, 105, 109897. [Google Scholar] [CrossRef]
- Karimi, E.; Ghorashi, S. The efect of SnO2 and ZnO on the performance of perovskite solar cells. J. Electron. Mater. 2020, 49, 364–376. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Ferdaous, M.T.; Wadi, M.A.A.; Chelvanathan, P.; Amin, N.; Islam, A.; Kamaruddin, N.; Zin, M.I.M.; Ruslan, M.H.; Sopian, K.B.; et al. Prospects of ternary Cd1−xZnxS as an electron transport layer and associated interface defects in a planar lead halide perovskite solar cell via numerical simulation. J. Electron. Mater. 2018, 47, 3051–3058. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154. [Google Scholar]
- Rai, N.; Rai, S.; Singh, P.K.; Dwivedi, D.K. Analysis of various ETL materials for an effcient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 2020, 31, 16269–16280. [Google Scholar] [CrossRef]
- Shasti, M.; Mortezaali, A. Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole transport materials for application in perovskite solar cells. Phys. Status Solidi A 2019, 216, 1900337. [Google Scholar] [CrossRef]
- Rossi, F.D.; Renno, G.; Taheri, B.; Nila, N.Y.; Illieva, V.; Fin, A.; Carlo, A.D.; Bonomo, M.; Barolo, C.; Brunetti, F. Modifed P3HT materials as hole transport layers for fexible perovskite solar cells. J. Power Sources 2021, 494, 229735. [Google Scholar] [CrossRef]
- Li, S.; Cao, Y.L.; Li, W.H.; Bo, Z.S. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021, 40, 2712–2729. [Google Scholar] [CrossRef]
- Momblona, C.; Malinkiewicz, O.; Carmona, C.R.; Soriano, A.; Escrig, L.G.; Bandiello, E.; Scheepers, M.; Edri, E.; Bolink, H.J. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Mater. 2014, 2, 081504. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.T.; Wei, J.H.; Peng, Y.F. Electronic and optical properties of mixed perovskites CsSnxPb(1−x)I3. AIP Adv. 2016, 6, 065213. [Google Scholar] [CrossRef] [Green Version]
- Manspeaker, C.; Zakhidov, A. Predicting hybrid perovskite performance based on secondary cation choice. Sol. Energy 2022, 241, 686–692. [Google Scholar] [CrossRef]
- Mahapatra, B.; Krishna, R.V.; Laxmi; Patel, P.K. Design and optimization of CuSCN/CH3NH3PbI3/TiO2 perovskite solar cell for efficient performance. Opt. Commun. 2022, 504, 127496. [Google Scholar] [CrossRef]
- Ritu; Gagandeep; Kumar, R.; Chand, F. Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 2023, 274, 170558. [Google Scholar] [CrossRef]
- Ahmed, T.; Shamima, S.U.D.; Maity, S.K.; Basak, A. Performance evaluation of lead free CH3NH3SnI3/GeTe Tandem solar cell with HTL layer by SCAPS 1D. Optik 2023, 282, 170836. [Google Scholar] [CrossRef]
- Akhtarianfar, S.F.; Shojaei, S.; Asl, S.K. High-performance CsPbI3/XPbI3 (X=MA and FA) heterojunction perovskite solar cell. Opt. Commun. 2022, 512, 128053. [Google Scholar] [CrossRef]
- Mukaddar, S.k.; Ghosh, S. 16.35% efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik 2022, 267, 169608. [Google Scholar] [CrossRef]
- Gourav; Ramachandran, K. Understanding the electronic, structural, optical, photovoltaic and thermoelectric properties of Cs2GeSnBr6 by first-principles and SCAPS-1D simulation. Optik 2023, 282, 170822. [Google Scholar] [CrossRef]
- Khatoon, S.; Yadav, S.K.; Chakraborty, V.; Singh, J.; Singh, R.B. A simulation study of all inorganic lead-free CsSnBr3 tin halide perovskite solar cell. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Kumar, M.; Raj, A.; Kumar, A.; Anshu, A. Effect of band-gap tuning on lead-free double perovskite heterostructure devices for photovoltaic applications via SCAPS simulation. Mater. Today Commun. 2021, 26, 101851. [Google Scholar] [CrossRef]
- Sarkar, J.; Talukdar, A.; Debnath, P.; Chatterjee, S. Study of bromine substitution on band gap broadening with consequent blue shift in optical properties and efficiency optimization of lead-free CsGeIxBr3−x based perovskite solar cells. J. Comput. Electron. 2023, 22, 1075–1088. [Google Scholar] [CrossRef]
- Miah, M.H.; Rahman, M.B.; Mayeen, F.K.; Khandaker, U.; Hatta, S.F.W.M.; Soin, N.B.; Islam, M.A. Optimization and detail analysis of novel structure Pb-free CsGeI3-based all-inorganic perovskite solar cells by SCAPS-1D. Optik 2023, 281, 170819. [Google Scholar] [CrossRef]
- Saikia, D.; Bera, J.; Betal, A.; Sahu, S. Performance evaluation of an all inorganic CsGeI3 based perovskite solar cell by numerical simulation. Opt. Mater. 2022, 123, 111839. [Google Scholar] [CrossRef]
- Das, A.; Samajdar, D.P. Simulation of CsGeI3-based perovskite solar cells using graphene Oxide interfacial layer for improved device performance. In Proceedings of the International Conference and Emerging Electronics, Bangalore, India, 11–14 December 2022. [Google Scholar]
- Ahmad, W.; Noman, M.; Jan, S.T.; Khan, A.D. Performance analysis and optimization of inverted inorganic CsGeI3 perovskite cells with carbon/cupper charge transport materials using SCAPS-1D. R. Soc. Open. Sci. 2023, 10, 221127. [Google Scholar] [CrossRef]
- Tulka, T.K.; Alam, N.; Akhtaruzzaman, M.; Sobayel, K.; Hossain, M.M. Optimization of a high-performance lead-free cesium-based inorganic perovskite solar cell through numerical approach. Heliyon 2022, 8, e11719. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar hetero-junction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Hossain, M.K.; Toki, G.F.I.; Alam, I.; Pandey, R.; Samajdar, D.P.; Rahman, M.F.; Islam, M.R.; Rubel, M.H.K.; Bencherif, H.; Madane, J.; et al. Numerical simulation and optimization of aCsPbI3-based perovskite solar cell to enhance the power conversion efficiency. N. J. Chem. 2023, 47, 4801–4817. [Google Scholar] [CrossRef]
- Sharma, D.; Mehra, R.; Balwinder, R. Mathematical modelling and simulation of CH3NH3Pb(I1−xBrx)3-based perovskite solar cells for high efficiency. J. Comput. Electron. 2023, 22, 383–393. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Unger, E.L.; Kegelmann, L.; Suchan, K.; Sorell, D.; Korte, L.; Albrecht, S. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A 2017, 5, 11401–11409. [Google Scholar] [CrossRef]
Parameters | FTO [22] | ETL [24] | CsGeI3 [29] | CsGeI2Br [29] | P3HT [39] |
---|---|---|---|---|---|
H (nm) | 400 | 25 | 400 * | 400 * | 150 * |
Eg (eV) | 3.5 | 3.25 | 1.363 | 1.579 | 1.7 |
χ (eV) | 4.1 | 4.08 | 3.76 | 3.76 | 3.5 |
εr | 9 | 9 | 18 | 18 | 3 |
Nc (1/cm3) | 2 × 1018 | 2 × 1021 | 1.56 × 1017 | 9.65 × 1017 | 2.2 × 1018 |
Nv (1/cm3) | 1.8 × 1019 | 1.8 × 1020 | 2.86 × 1018 | 1.04 × 1018 | 2.2 × 1018 |
μn(cm2/Vs) | 20 | 20 | 20 | 20 | 1.8 × 10−3 |
μp(cm2/Vs) | 10 | 10 | 20 | 20 | 1.8 × 10−2 |
ND (1/cm3) | 1020 | 1018 | 0 | 0 | 0 |
NA (1/cm3) | 0 | 0 | 1016 * | 1016 * | 1018 * |
Vt (cm/s) | 107 | 107 | 107 | 107 | 107 |
Nt (1/cm3) | 1014 | 1014 | 1014 * | 1014 * | 1014 |
Parameters | FTO | ETL | CsGeI3 | CsGeI2Br | P3HT |
---|---|---|---|---|---|
H (nm) | 400 | 25 | 900 | 100 | 50 |
Eg (eV) | 3.5 | 3.25 | 1.363 | 1.579 | 1.7 |
χ (eV) | 4.1 | 4.08 | 3.76 | 3.76 | 3.5 |
εr | 9 | 9 | 18 | 18 | 3 |
Nc (1/cm3) | 2 × 1018 | 2 × 1021 | 1.56 × 1017 | 9.65 × 1017 | 2.2 × 1018 |
Nv (1/cm3) | 1.8 × 1018 | 1.8 × 1020 | 2.86 × 1018 | 1.04 × 1018 | 2.2 × 1018 |
μn (cm2/Vs) | 20 | 20 | 20 | 20 | 1.8 × 10−3 |
μp (cm2/Vs) | 10 | 10 | 20 | 20 | 1.8 × 10−2 |
ND (1/cm3) | 1020 | 1018 | 0 | 0 | 0 |
NA (1/cm3) | 0 | 0 | 1018 | 1016 | 1018 |
Vt (cm/s) | 107 | 107 | 107 | 107 | 107 |
Nt (1/cm3) | 1014 | 1014 | 1014 | 1014 | 1014 |
Device Structure | FF (%) | PCE (%) | Voc (V) | Jsc (mA/cm2) |
---|---|---|---|---|
FTO/TiO2/CsGeI2Br/CsGeI3/P3HT/Au | 79.19 | 31.86 | 1.2268 | 32.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenfack, A.D.K.; Thantsha, N.M.; Msimanga, M. Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D. Solar 2023, 3, 458-472. https://doi.org/10.3390/solar3030025
Kenfack ADK, Thantsha NM, Msimanga M. Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D. Solar. 2023; 3(3):458-472. https://doi.org/10.3390/solar3030025
Chicago/Turabian StyleKenfack, Abraham Dimitri Kapim, Nicolas Matome Thantsha, and Mandla Msimanga. 2023. "Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D" Solar 3, no. 3: 458-472. https://doi.org/10.3390/solar3030025
APA StyleKenfack, A. D. K., Thantsha, N. M., & Msimanga, M. (2023). Simulation of Lead-Free Heterojunction CsGeI2Br/CsGeI3-Based Perovskite Solar Cell Using SCAPS-1D. Solar, 3(3), 458-472. https://doi.org/10.3390/solar3030025