Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [PubMed]
- He, Y.; Petryk, M.; Liu, Z.; Chica, D.G.; Hadar, I.; Leak, C.; Ke, W.; Spanopoulos, I.; Lin, W.; Chung, D.Y.; et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays. Nat. Photonics 2021, 15, 36–42. [Google Scholar] [CrossRef]
- Schulz, P.; Cahen, D.; Kahn, A. Halide perovskites: Is it all about the interfaces? Chem. Rev. 2019, 119, 3349–3417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 7 May 2022).
- Eperon, G.E.; Leijtens, T.; Bush, K.A.; Prasanna, R.; Green, T.; Wang, J.T.-W.; McMeekin, D.P.; Volonakis, G.; Milot, R.L.; May, R.; et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Ding, L. All-perovskite tandem structures shed light on thin-film photovoltaics. Sci. Bull. 2020, 65, 1144–1146. [Google Scholar] [CrossRef]
- Fang, Z.; Zeng, Q.; Zuo, C.; Zhang, L.; Xiao, H.; Cheng, M.; Hao, F.; Bao, Q.; Zhang, L.; Yuan, Y.; et al. Perovskite-based tandem solar cells. Sci. Bull. 2021, 66, 621–636. [Google Scholar] [CrossRef]
- He, R.; Ren, S.; Chen, C.; Yi, Z.; Luo, Y.; Lai, H.; Wang, W.; Zeng, G.; Hao, X.; Wang, Y.; et al. Wide-bandgap organic-inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy Environ. Sci. 2021, 14, 5723–5759. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Li, C.; Zhao, D.; Yan, Y. Low-bandgap mixed tin-lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 2019, 29, 1808801. [Google Scholar] [CrossRef]
- Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.S.; Ma, T.; et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011. [Google Scholar] [CrossRef]
- Zuo, F.; Williams, S.T.; Liang, P.-W.; Chueh, C.-C.; Liao, C.-Y.; Jen, A.K. -Y. Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 2014, 26, 6454–6460. [Google Scholar] [CrossRef]
- Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C.R.; Wang, C.; Xiao, Y.; Cimaroli, A.J.; Ellingson, R.J.; et al. Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 2016, 138, 12360–12363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C.R.; Cimaroli, A.J.; Guan, L.; Ellingson, R.J.; Zhu, K.; et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, C.; Wang, C.; Junda, M.M.; Song, Z.; Grice, C.R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N.J.; et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 2018, 3, 1093–1100. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Zhao, D.; Xiao, C.; Subedi, B.; Shrestha, N.; Junda, M.M.; Wang, C.; Jiang, C.; Al-Jassim, M.; et al. Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells. Adv. Energy Mater. 2018, 9, 1803135. [Google Scholar] [CrossRef]
- Tong, J.; Song, Z.; Kim, D.H.; Chen, X.; Chen, C.; Palmstrom, A.F.; Ndione, P.F.; Reese, M.O.; Dunfield, S.P.; Reid, O.G.; et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 2019, 364, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M.I.; Gao, Y.; Xu, J.; Xiao, M.; et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 2019, 4, 864–873. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, R.; Han, Q.; Hou, Y.; Qin, Z.; Nguyen, H.T.; Wen, J.; Wei, M.; Yeddu, V.; Saidaminov, M.I.; et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 2020, 5, 870–880. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, J.; He, R.; Lai, H.; Ren, S.; Jiang, Y.; Wan, Z.; Wang, W.; Hao, X.; Wang, Y.; et al. Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy Mater. 2021, 11, 2101045. [Google Scholar] [CrossRef]
- Lin, R.; Xu, J.; Wei, M.; Wang, Y.; Qin, Z.; Liu, Z.; Wu, J.; Xiao, K.; Chen, B.; Park, S.M.; et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 2022, 603, 73–78. [Google Scholar] [CrossRef]
- Li, C.; Song, Z.; Chen, C.; Xiao, C.; Subedi, B.; Harvey, S.P.; Shrestha, N.; Subedi, K.K.; Chen, L.; Liu, D.; et al. Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy 2020, 5, 768–776. [Google Scholar] [CrossRef]
- Peng, C.; Li, C.; Zhu, M.; Zhang, C.; Jiang, X.; Yin, H.; He, B.; Li, H.; Li, M.; So, S.K.; et al. Reducing energy disorder for efficient and stable Sn-Pb alloyed perovskite solar cells. Angew. Chem. Int. Ed. 2022, 61, e202201209. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Singh, T. Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 2019, 63, 103828. [Google Scholar] [CrossRef]
- Yoo, D.J.; Kim, A.R.; Balanay, M.P.; Kim, D.H. Alkoxy-substituted triphenylamine based chromophores for dye-sensitized solar cells. Bull. Korean Chem. Soc. 2012, 33, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef]
- Ambade, S.B.; Ambade, R.B.; Kim, S.; Park, H.; Yoo, D.J.; Leel, S.-H. Performance enhancement in inverted solar cells by interfacial modification of ZnO nanoparticle buffer layer. J. Nanosci. Nanotechnol. 2014, 14, 8561–8566. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H.C.; Ramadan, A.J.; Mahesh, S.; Liu, J.; Oliver, R.D.J.; Lim, J.; et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhao, L.; Yang, X.; Hou, C.; Wu, J.; Su, R.; Jia, S.; Shyue, J.; Luo, D.; et al. Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy Environ. Sci. 2021, 14, 6526–6535. [Google Scholar] [CrossRef]
- Hu, S.; Otsuka, K.; Murdey, R.; Nakamura, T.; Truong, M.A.; Yamada, T.; Handa, T.; Matsuda, K.; Nakano, K.; Sato, A.; et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy Environ. Sci. 2022, 15, 2096–2107. [Google Scholar] [CrossRef]
- Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S.R.; Chen, M.; Baranwal, A.K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D.; et al. Tin-lead perovskite solar cells fabricated on hole selective monolayers. ACS Energy Lett. 2022, 7, 966–974. [Google Scholar] [CrossRef]
- Ravichandiran, P.; Prabakaran, D.S.; Maroli, N.; Kim, A.R.; Park, B.-H.; Han, M.-K.; Ramesh, T.; Ponpandian, S.; Yoo, D.J. Mitochondria-targeted acridine-based dual-channel fluorescence chemosensor for detection of Sn4+ and Cr2O72− ions in water and its application in discriminative detection of cancer cells. J. Hazard Mater. 2021, 419, 126409. [Google Scholar] [CrossRef]
Device Structure | JSC (mA cm−2) | VOC (V) | FF (%) | PCE (%) | Ref. |
---|---|---|---|---|---|
FTO/c-TiO2/CH3NH3Sn0.5Pb0.5I3/P3HT/Ag | 20.04 | 0.42 | 50.0 | 4.18 | [10] |
ITO/PEDOT:PSS/MASn0.15Pb0.85I3/PCBM/Bis-salt/Ag | 19.5 | 0.77 | 67.0 | 10.1 | [11] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4/C60/BCP/Ag | 26.86 | 0.795 | 70.6 | 15.08 | [12] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4/C60/BCP/Ag | 28.5 | 0.853 | 72.5 | 17.6 | [13] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:Cl/C60/BCP/Ag | 29.0 | 0.841 | 74.4 | 18.1 | [14] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:Br/C60/BCP/Ag | 28.72 | 0.888 | 74.6 | 19.03 | [15] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:GuaSCN/C60/BCP/Ag | 30.4 | 0.834 | 80.8 | 20.5 | [16] |
ITO/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3:Sn powder/C60/BCP/Cu | 31.4 | 0.831 | 80.8 | 21.1 | [17] |
ITO/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3:FSA/C60/BCP/Cu | 31.6 | 0.850 | 80.8 | 21.7 | [18] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:SnF2/C60/BCP/Ag | 30.6 | 0.834 | 79.4 | 20.27 | [19] |
ITO/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3:CF3-PA/C60/BCP/Cu | 33.0 | 0.841 | 80.0 | 22.2 | [20] |
ITO/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3/PySCN/C60/BCP/Ag | 29.81 | 0.865 | 79.1 | 20.4 | [21] |
ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:BBMS/C60/BCP/Ag | 32.2 | 0.849 | 80.6 | 22.03 | [22] |
FTO/PEDOT:PSS/Cs0.1FA0.6MA0.3Pb0.5Sn0.5I3:GlyHCl/EDAI2/C60/BCP/Ag | 32.5 | 0.89 | 82 | 23.6 | [29] |
FTO/2PACz/MPA/Cs0.025FA0.475MA0.5Sn0.5Pb0.5I2.925Br0.075/C60/PCBM/BCP/Ag | 32.77 | 0.88 | 80 | 23.3 | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Chen, C.; Zhao, D. Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells. Solar 2022, 2, 334-340. https://doi.org/10.3390/solar2030019
Zhu J, Chen C, Zhao D. Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells. Solar. 2022; 2(3):334-340. https://doi.org/10.3390/solar2030019
Chicago/Turabian StyleZhu, Jingwei, Cong Chen, and Dewei Zhao. 2022. "Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells" Solar 2, no. 3: 334-340. https://doi.org/10.3390/solar2030019
APA StyleZhu, J., Chen, C., & Zhao, D. (2022). Low-Bandgap Mixed Tin–Lead Perovskite Solar Cells. Solar, 2(3), 334-340. https://doi.org/10.3390/solar2030019