Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Solar Cell Characterisation
2.2. PL Image Data Acquisition
2.3. Image Processing and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Energy and the Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/energy-and-green-deal_en (accessed on 18 October 2021).
- Allied Market Research. Thin Film Solar Cell Market by Type (Cadmium Telluride, Copper Indium Gallium Diselenide, and Amorphous Thin-film Silicon), End User (Residential, Commercial, and Utility), and Installation (On-Grid and Off-Grid): Global Opportunity Analysis and Industry. Available online: https://www.alliedmarketresearch.com/thin-film-solar-cell-market (accessed on 18 October 2021).
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide basedsolar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Global Market Insights. Solar Cells Market Size by Technology, December 2016. Available online: https://www.gminsights.com/industry-analysis/solar-cells-market (accessed on 21 August 2020).
- Tang, W.; Li, X.; Lin, C.; Chen, C.; Xu, C. Production of CIGS solar cell with an appropriate atomic ratio using magnetron sputtering. Jpn. J. Appl. Phys. 2020, 59, 086502. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Sunaryono; Aripriharta; Diantoro, M.; Zulhadjri; Nur, H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Dhimish, M.; Holmes, V. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging. J. Sci. Adv. Mater. Devices 2019, 4, 499–508. [Google Scholar] [CrossRef]
- Ruggeri, E.; van Aken, B.B.; Olindo, I.; Zeman, M. Electroluminescence and dark lock-in thermography for the quality assessment of metal-wrap-through solar devices. IEEE J. Photovolt. 2018, 8, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Nos, O.; Favre, W.; Jay, F.; Ozanne, F.; Valla, A.; Alvarez, J.; Munoz, D.; Ribeyron, P.J. Quality control method based on photoluminescence imaging for the performance prediction of c-Si/a-Si:H heterojunction solar cells in industrial production lines. Sol. Energy Mater. Sol. Cells 2016, 144, 210–220. [Google Scholar] [CrossRef]
- Breitenstein, O. Local efficiency analysis of solar cells based on lock-in thermography. Sol. Energy Mater. Sol. Cells 2012, 107, 381–389. [Google Scholar] [CrossRef]
- Isenberg, J.; Riepe, S.; Glunz, S.W.; Warta, W. Carrier density imaging (CDI): A spatially resolved lifetime measurement suitable for in-line process-control. In Proceedings of the Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002. [Google Scholar]
- Ziska, C.; Ossig, C.; Pyrlik, N.; Carron, R.; Avancini, E.; Fevola, G.; Kolditz, A.; Siebels, J.; Kipp, T.; Cai, Z.; et al. Quantifying the elemental distribution in solar cells from X-ray fluorescence measurements with multiple detector modules. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15–21 August 2020. [Google Scholar]
- Stuckelberger, M.E.; Nietzold, T.; West, B.; Fashchi, R.; Poplavskyy, D.; Bailey, J.; Lai, B.; Maser, J.M.; Bertoni, M. Defect activation and annihilation in CIGS solar cells: An operando x-ray microscopy study. J. Phys. Energy 2020, 2, 025001. [Google Scholar] [CrossRef]
- Parravicini, J.; Acciarri, M.; Murabito, M.; Le Donne, A.; Gasparotto, A.; Binetti, S. In-depth photoluminescence spectra of pure CIGS thin films. Appl. Opt. 2018, 57, 1849–1856. [Google Scholar] [CrossRef] [PubMed]
- Repins, I.; Contreras, M.; Romero, M.; Yan, Y.; Metzger, W.; Li, J.; Johnston, S.; Egaas, B.; DeHart, C.; Scharf, J.; et al. Characterization of 19.9%-efficient CIGS absorbers. In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008. [Google Scholar]
- Lin, L.; Ravindra, N.M. Temperature dependence of CIGS and perovskite solar cell performance: An overview. SN Appl. Sci. 2020, 2, 1361. [Google Scholar] [CrossRef]
- Lawerenz, A.; Lauer, K.; Blech, M.; Laades, A.; Zentgraf, M. Photoluminescence lifetime imaging using LED arrays as excitation source. In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversio, Valencia, Spain, 6–10 September 2010; pp. 2486–2489. [Google Scholar]
- De Biasio, M.; Zikulnig, J.; Mühleisen, W.; Kraft, M.; Simor, M.; Bolt, P.J. Inline inspection of CIGS solar cells by means of Raman spectroscopy and photoluminescence imaging. In Next-Generation Spectroscopic Technologies XIV; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11725. [Google Scholar]
- Zikulnig, J.; Harms, K.; Mühleisen, W.; Neumaier, L.; Bolt, P.J.; Simor, M.; de Biasio, M. Raman spectroscopy as a possible in-line inspection tool for cigs solar cells in comparison with photoluminescence measurements. In Proceedings of the 37th European Photovoltaic Solar Energy Conference and Exhibition, Lisbon, Portugal, 7–11 September 2020. [Google Scholar]
- Python Software Foundation. Python Software Foundation. Available online: https://www.python.org/psf/ (accessed on 21 October 2021).
- Statista. Most Used Programming Languages among Developers Worldwide, as of 2021. Available online: https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/ (accessed on 21 October 2021).
- Annala, L.; Eskelinen, M.; Hämäläinen, J.; Riihinen, A.; Pölönen, I. Practical approach for hyperspectral image processing in Python. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Gouillart, E.; Nunez-Iglesias, J.; van der Walt, S. Analyzing microtomography data with Python and the scikit-image library. Adv. Struct. Chem. Imaging 2016, 2, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widodo, C.E.; Adi, K.; Gernowo, R. Medical image processing using python and open cv. J. Phys. Conf. Ser. 2020, 1524, 012003. [Google Scholar] [CrossRef]
- Deitsch, S.; Buerhop-Lutz, C.; Sovetkin, E.; Steland, A.; Maier, A.; Gallwitz, F.; Riess, C. Segmentation of photovoltaic module cells in uncalibrated electroluminescence images. Mach. Vis. Appl. 2021, 32, 84. [Google Scholar] [CrossRef]
- Python Software Foundation. Opencv-Python 4.5.4.58. Available online: https://pypi.org/project/opencv-python/ (accessed on 27 October 2021).
- NumPy. All Rights Reserved. NumPy. Available online: https://numpy.org/ (accessed on 27 October 2021).
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- SciPy. SciPy—Fundamental Algorithms for Scientific Computing in Python. 2021. Available online: https://scipy.org/ (accessed on 5 November 2021).
- Ariza-Calderon, H.; Lozada-Morales, R.; Zelaya-Angel, O.; Mendoza-Alvarez, J.G.; Banos, L. Photoluminescence measurements in the phase transition region for CdS thin films. J. Vac. Sci. Technol. 1996, 14, 2480. [Google Scholar] [CrossRef]
- Keras. Keras. Available online: https://keras.io/ (accessed on 5 November 2021).
- Usman, B.; Ayuba, S. Practical Digital Image Enhancements using Spatial and Frequency Domains Techniques. Int. Res. J. Comput. Sci. 2015, 2, 27–32. [Google Scholar]
Predicted Positive (Grey Value > 31) | Predicted Negative (Grey Value ≤ 31) | Sum | |
---|---|---|---|
Actual Positive (Eff > 12%) | 186 | 12 | 198 |
Actual Negative (Eff ≤ 12%) | 8 | 114 | 122 |
Sum | 194 | 126 | 320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zikulnig, J.; Mühleisen, W.; Bolt, P.J.; Simor, M.; De Biasio, M. Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells. Solar 2022, 2, 1-11. https://doi.org/10.3390/solar2010001
Zikulnig J, Mühleisen W, Bolt PJ, Simor M, De Biasio M. Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells. Solar. 2022; 2(1):1-11. https://doi.org/10.3390/solar2010001
Chicago/Turabian StyleZikulnig, Johanna, Wolfgang Mühleisen, Pieter Jan Bolt, Marcel Simor, and Martin De Biasio. 2022. "Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells" Solar 2, no. 1: 1-11. https://doi.org/10.3390/solar2010001
APA StyleZikulnig, J., Mühleisen, W., Bolt, P. J., Simor, M., & De Biasio, M. (2022). Photoluminescence Imaging for the In-Line Quality Control of Thin-Film Solar Cells. Solar, 2(1), 1-11. https://doi.org/10.3390/solar2010001