Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid
Abstract
:1. Introduction
- (a)
- Shear-rate-dependent viscosity: most of these fluids display “shear thinning”; that is, the viscosity decreases with increasing shear rate.
- (b)
- Normal stress effects: unequal normal stresses in the different directions in steady shear flow and related simple flows.
- (c)
- Elastic and tensile properties: the resistance of the fluid to stretching.
2. Basic Equations and Ordering Analysis
The Steady-State Case
3. Lie Group Analysis
4. Symmetry Reductions and the Similarity Solution
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
, | Rivilin–Erickson tensors |
Stretching tensor | |
Pressure | |
P | Freestream pressure |
s | Group parameter |
Symmetric Cauchy stress tensor | |
Velocity components of the potential flow in the x- and z-directions | |
U, W | The x- and z-freestream velocities |
Velocity vector field | |
Prolonged infinitesimal group operator | |
Differentiation with respect to x | |
Boundary-layer thickness in the y-direction | |
Kronecker delta = | |
Coefficient of viscosity | |
Coefficient of viscoelasticity | |
Coefficient of cross-viscosity | |
, | Infinitesimals of the group |
Function that transforms the jth derivative |
References
- Tanner, R.I. Engineering Rheology; Claredon Press: Oxford, UK, 1985. [Google Scholar]
- Reiner, M.; Abir, D. (Eds.) Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics; Pergamon Press: Elmsford, NY, USA, 1964. [Google Scholar]
- Seeger, R.J.; Temple, G. (Eds.) Research Frontiers in Fluid Dynamics; Interscience: Southampton, NY, USA, 1965. [Google Scholar]
- Denn, M.M. Boundary Layer Flows for a Class of Elastic Fluids. Chem. Eng. Sci. 1967, 22, 395–405. [Google Scholar] [CrossRef]
- Showalter, W.R. Mechanics of Non-Newtonian Fluids; Pergamon Press: Oxford, UK, 1978. [Google Scholar]
- Ting, T.W. Certain Non-steady Flows of Second-Order Fluids. Arch. Ration. Mech. Anal. 1963, 14, 1–26. [Google Scholar] [CrossRef]
- Beard, D.W.; Walters, K. Elastico-viscous Boundary Layer Flows. Proc. Camb. Philos. Soc. 1964, 60, 667–674. [Google Scholar] [CrossRef]
- Sarpkaya, T.; Rainey, P.G. Stagnation Point Flow of a Second Order Viscoelastic Fluid. Acta Mech. 1971, 11, 237–246. [Google Scholar] [CrossRef]
- Huilgol, R.R. On Uniqueness and Non-uniqueness in the Plane Creeping Flows of Second Order Fluids. SIAM J. Appl. Math. 1973, 24, 226–233. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Gupta, A.S. Flow and Stability of a Second Grade Flow Between Two Parallel Plates Rotating About Non-coincident Axis. Int. J. Eng. Sci. 1981, 19, 1401–1409. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Gupta, A.S. On a Class of Exact Solutions of a Second Grade Fluid. Int. J. Eng. Sci. 1981, 19, 1009–1014. [Google Scholar] [CrossRef]
- Siddiqui, A.M. Flow Problems of the Fluids of Differential Type. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 1986. [Google Scholar]
- Stephani, H.; Wolf, T. Spherically Symmetric Perfect Fluids in Shear-free Motion—The Symmetry Approach. Class. Quantum Gravity 1996, 13, 1261–1271. [Google Scholar] [CrossRef]
- Cerveró, J.; Zurrón, O. Integrability of the Perturbed KdV Equation for Convecting Fluids: Symmetry Analysis and Solutions. J. Nonlinear Math. Phys. 1996, 3, 1–23. [Google Scholar] [CrossRef]
- Alexa, C.; Vrinceanu, D. Symmetry analysis of the 1+1 dimensional relativistic imperfect fluid dynamics. arXiv 1997, arXiv:physics/9710004. [Google Scholar]
- Habibullin, I. Symmetry Approach in Boundary Value Problems. J. Nonlinear Math. Phys. 1996, 3, 147. [Google Scholar] [CrossRef]
- Hansen, A.G.; Herzig, H.Z. On Possible Similarity Solutions for Three-Dimensional, Incompressible, Laminar Boundary Layers I; NACA TN 3768; NACA: Washington, DC, USA, 1956. [Google Scholar]
- Sacheti, N.C.; Chandran, P. On Similarity Solutions for Three-dimensional Flow of Second Order Fluids. J. Phys. Soc. Jpn. 1997, 66, 618–622. [Google Scholar] [CrossRef]
- Hewitt, R.E.; Duck, P.W. Three-dimensional Boundary Layers with Short Spanwise Scales. J. Fluid Mech. 2014, 756, 452–469. [Google Scholar] [CrossRef]
- Uddin, M.; Khan, W.; Ismail, A. Two-parameter Scaling Group for Unsteady Convective Magnetohydrodynamic Flow. Alex. Eng. J. 2016, 55, 829–835. [Google Scholar] [CrossRef]
- Aziz, T.; Aziz, A.; Khalique, C. Exact Solutions for Stokes’ Flow of a Non-Newtonian Nanofluid Model: A Lie Similarity Approach. Z. Fur Naturforschung Sect. A-A J. Phys. Sci. 2016, 71, 621–630. [Google Scholar] [CrossRef]
- Hashemi, M.S.; Baleanu, D. Symmetry Analysis of Fractional Differential Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- Iskenderoglu, G.; Kaya, D. Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense. Chaos Solitons Fractals 2020, 134, 109684. [Google Scholar] [CrossRef]
- Chatibi, Y.; El Kinani, E.H.; Ouhadan, A. On the discrete symmetry analysis of some classical and fractional differential equations. Math. Methods Appl. Sci. 2019, 44, 2868–2878. [Google Scholar] [CrossRef]
- Sethukumarasamy, K.; Vijayaraju, P.; Prakash, P. On Lie Symmetry Analysis of Certain Coupled Fractional Ordinary Differential Equations. J. Nonlinear Math. Phys. 2021, 28, 219–241. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Birs, I.R.; Copot, D.; Muresan, C.I.; Caponetto, R. Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190284. [Google Scholar] [CrossRef]
- Aldi, N.; Buratto, C.; Casari, N.; Dainese, D.; Mazzanti, V.; Mollica, F.; Munari, E.; Occari, M.; Pinelli, M.; Randi, S.; et al. Experimental and Numerical Analysis of a Non-Newtonian Fluids Processing Pump. Energy Procedia 2017, 126, 762–769. [Google Scholar] [CrossRef]
- Akbarzadeh, P.; Norouzi, M.; Ghasemi, R.; Daghighi, S.Z. Experimental study on the entry of solid spheres into Newtonian and non-Newtonian fluids. Phys. Fluids 2022, 34, 033111. [Google Scholar] [CrossRef]
- Liu, Y.; Upchurch, E.R.; Ozbayoglu, E.M. Experimental Study of Single Taylor Bubble Rising in Stagnant and Downward Flowing Non-Newtonian Fluids in Inclined Pipes. Energies 2021, 14, 578. [Google Scholar] [CrossRef]
- Dörner, P.; Schröder, W.; Klaas, M. Experimental quantification of oscillating flow in finite-length straight elastic vessels for Newtonian and non-Newtonian fluids. Eur. J. Mech.-B/Fluids 2021, 87, 180–195. [Google Scholar] [CrossRef]
- Asghar, Z.; Asghar, Z.; Khan, M.W.S.; Khan, M.W.S.; Pasha, A.A.; Pasha, A.A.; Rahman, M.M.; Rahman, M.M.; Sankaralingam, L.; Sankaralingam, L.; et al. On non-Newtonian fluid flow generated via complex metachronal waves of cilia with magnetic, hall, and porous effects. Phys. Fluids 2023, 35, 093601. [Google Scholar] [CrossRef]
- Schlichting, H. Boundary Layer Theory; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Seshadri, R.; Na, T.Y. Group Invariance in Engineering Boundary Value Problems; Springer: New York, NY, USA, 1985. [Google Scholar]
- Hemmecke, R.; Hillgarter, E.; Landsmann, G.; Winkler, F. Symbolic Differential Elimination for Symmetry Analysis. In Proceedings of the 4th Mathmod, Vienna, Austria, 5–7 February 2003. [Google Scholar]
- Hereman, W. Review of Symbolic Software for Lie Symmetry Analysis. Mathl. Comp. Model. 1997, 25, 115–132. [Google Scholar] [CrossRef]
- Khare, V.; Timol, M. Determining equations for infinitesimal transformation of second and third-order ODE using algorithm in open-source SageMath. Malaya J. Mat. 2020, 8, 657–661. [Google Scholar] [CrossRef]
- Reid, G.J. Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur. J. Appl. Math. 1991, 2, 293–318. [Google Scholar] [CrossRef]
- Reid, G.J. Finding symmetries of differential equations without integrating determining equations. Eur. J. Appl. Math. 1991, 2, 319–340. [Google Scholar] [CrossRef]
- Reid, G.J. A triangularization algorithm which determines the Lie symmetry algebra of any system of PDEs. J. Phys. A Math. Gen. 1990, 23, L853. [Google Scholar] [CrossRef]
- Dimas, S.; Tsoubelis, D. A new Mathematica−based program for solving overdetermined systems of PDE. In Proceedings of the 8th International Mathematica Symposium, Avignon, France, 19–23 June 2006. [Google Scholar]
- Hickman, M. The Use of MAPLE in the Search for Symmetries; Rep. No. 77; University of Canterbury: Christchurch, New Zealand, 1993. [Google Scholar]
- Gear, C.W. Numerical Solution of Ordinary Differential Equations: Is There Anything Left to Do? SIAM Rev. 1981, 23, 10–24. [Google Scholar] [CrossRef]
- Baker, C.; Monegato, G.; Pryce, J.; Berghe, G.V. Continuous Runge–Kutta Methods for the Numerical Solution of Volterra Integral Equations. J. Comput. Appl. Math. 2000, 125, 1–29. [Google Scholar]
- Coscia, V.; Sequeira, A.; Videman, J. Existence and uniqueness of classical solutions for a class of complexity-2 fluids. Int. J. Non-linear Mech. 1995, 30, 531–551. [Google Scholar] [CrossRef]
- Galdi, G.P.; Dalsen, M.G.-V.; Sauer, N. Existence and uniqueness of classical solutions of the equations of motion for second-grade fluids. Arch. Ration. Mech. Anal. 1993, 124, 221–237. [Google Scholar] [CrossRef]
- Rajagopal, K.R. On boundary conditions for fluids of the differential type. In Navier—Stokes Equations and Related Nonlinear Problems; Sequeira, A., Ed.; Springer Science+Business Media: New York, NY, USA, 1995. [Google Scholar]
- Rajagopal, K.R.; Kaloni, P.N. Some remarks on boundary conditions for fluids of differential type. In Continuum Mechanics and Applications, Hemishpere; Graham, G.A.C., Malik, S.K., Eds.; CRC Press: New York, NY, USA, 1989; pp. 935–942. [Google Scholar]
- Rajagopal, K.R. Boundedness and uniqueness of fluids of the differential type. Acta Cienc. Indica 1982, 18, 1–11. [Google Scholar]
- Rajagopal, K.; Szeri, A.; Troy, W. An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech. 1986, 21, 279–289. [Google Scholar] [CrossRef]
- Galdi, G.P.; Sequeira, A. Further existence results for classical solutions of the equations of a second-grade fluid. Arch. Ration. Mech. Anal. 1994, 128, 297–312. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Saheli, A.; Zogheib, B. Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid. AppliedMath 2024, 4, 1588-1599. https://doi.org/10.3390/appliedmath4040084
El Saheli A, Zogheib B. Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid. AppliedMath. 2024; 4(4):1588-1599. https://doi.org/10.3390/appliedmath4040084
Chicago/Turabian StyleEl Saheli, Ali, and Bashar Zogheib. 2024. "Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid" AppliedMath 4, no. 4: 1588-1599. https://doi.org/10.3390/appliedmath4040084
APA StyleEl Saheli, A., & Zogheib, B. (2024). Symmetry Analysis of the 3D Boundary-Layer Flow of a Non-Newtonian Fluid. AppliedMath, 4(4), 1588-1599. https://doi.org/10.3390/appliedmath4040084