Next Article in Journal
The Reliability Inference for Multicomponent Stress–Strength Model under the Burr X Distribution
Previous Article in Journal
Four Measures of Association and Their Representations in Terms of Copulas
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three

by
Lucian Trifina
*,
Daniela Tărniceriu
and
Ana-Mirela Rotopănescu
Department of Telecommunications and Information Technologies, “Gheorghe Asachi” Technical University, 700506 Iasi, Romania
*
Author to whom correspondence should be addressed.
AppliedMath 2024, 4(1), 383-393; https://doi.org/10.3390/appliedmath4010020
Submission received: 15 January 2024 / Revised: 20 February 2024 / Accepted: 3 March 2024 / Published: 16 March 2024

Abstract

:
In this paper, we address the inverse of a true fourth-degree permutation polynomial (4-PP), modulo a positive integer of the form  32 k L Ψ , where  k L { 1 , 3 }  and  Ψ  is a product of different prime numbers greater than three. Some constraints are considered for the 4-PPs to avoid some complicated coefficients’ conditions. With the fourth- and third-degree coefficients of the form  k 4 , f Ψ  and  k 3 , f Ψ , respectively, we prove that the inverse PP is (I) a 4-PP when  k 4 , f { 1 , 3 }  and  k 3 , f { 1 , 3 , 5 , 7 }  or when  k 4 , f = 2  and (II) a 5-PP when  k 4 , f { 1 , 3 }  and  k 3 , f { 0 , 2 , 4 , 6 } .

1. Introduction

Permutation polynomials (PPs) have been studied for a long time [1]. Possible applications of PPs include those in cryptography, those used for sequence generation, or those used for interleavers in turbo codes [2,3,4,5].
A well-known result is that a permutation induced by a PP,  π ( x ) , modulo a positive integer L, has an inverse permutation induced also by a PP,  ρ ( x ) , modulo L. The PP  ρ ( x )  that generates the inverse permutation is named the inverse PP modulo L of PP  π ( x ) . The inverse of a PP is particularly useful for deriving upper bounds of the minimum distance of a turbo code when using a PP interleaver [6].

1.1. Main Contributions

In the following, we list the main contributions of this paper:
  • We derive the inverse PPs for fourth-degree PPs (4-PPs) modulo a positive integer of the form  32 Ψ  or  96 Ψ , with  Ψ  as a product of different prime numbers greater than three. To avoid some complicated conditions on the coefficients, we impose some restrictions when the condition  3 ( p i 1 )  or  p i = 7  is fulfilled for a prime  p i Ψ . In these cases, we consider only the fourth-, third-, and second-degree coefficients that are multiples of  p i . If  Ψ  is a product of different prime numbers  p i > 7  so that  3 ( p i 1 ) , the result in this paper is fully general with respect to the possible coefficients of the 4-PP.
  • We give examples showing how to compute the inverse of a 4-PP. If the fourth-, third-, and second-degree coefficients of the 4-PP are of the forms  k 4 , f Ψ k 3 , f Ψ , and  k 2 , f Ψ , respectively, the second-to-the highest-degree coefficients of the inverse PP are immediately found using the results obtained depending on the values of  k 4 , f k 3 , f , and  k 2 , f . The first-degree coefficient of the inverse PP can be found from a first-degree congruence equation involving the first-degree coefficient of the 4-PP.
  • In the “Remarks” Section 5, we show how the inverse of a 4-PP can be found by means of the inverse normalized PPs modulo each factor from the prime decomposition of L. We have made remarks regarding the facilities of finding the inverse PP using the results derived in this paper.

1.2. Structure of This Paper

The structure of this paper is as follows. Some basic results about 4-PPs are given in Section 2. The main results are obtained in Section 3. Four examples illustrating how we can find the inverse of 4-PP are given in Section 4, and some remarks are made in Section 5.

2. Preliminaries

2.1. Notations

The following notations are used in the paper:
  • N *  stands for the set of positive integers (i.e., the set of natural numbers greater than zero).
  • ( mod L ) , with  L N * , stands for the modulo L operation.
  • a b , with  a , b N * , stands for a divides b.
  • a b , with  a , b N * , stands for a does not divide b.
  • gcd ( a , b ) , with  a , b N * , stands for the greatest common divisor of a and b.
  • a ! , with  a N * , stands for the factorial of a (i.e., the product  1 · 2 · 3 · · a ).

2.2. Results about 4-PPs

A fourth-degree polynomial
π ( x ) = ( f 1 x + f 2 x 2 + f 3 x 3 + f 4 x 4 ) ( mod L ) ,
is 4-PP modulo L if for  x { 0 , 1 , , L 1 } , values  π ( x ) ( mod L )  produce a permutation of the set  { 0 , 1 , , L 1 } .
A 4-PP is true if the permutation it performs cannot be accomplished by a permutation polynomial of a degree smaller than four.
Two 4-PPs with different coefficients are called different if they perform different permutations.
In [7], conditions on coefficients  f 1 f 2 f 3 , and  f 4  are derived so that the fourth-degree polynomial in (1) is a 4-PP modulo L. As we are interested in positive integers, L, of the form  32 · i = 1 N p p i  or  96 · i = 1 N p p i , with  N p  as a positive integer, we give in Table 1 conditions for the coefficients only for the primes 2, 3, and  p i i = 1 , 2 , , N p , when L is of the form
L = 2 n L , 2 · 3 n L , 3 · i = 1 N p p i , with n L , 2 > 1 , n L , 3 { 0 , 1 } , p i > 3 , i = 1 , 2 , , N p , p 1 < p 2 < < p N p .
A d-PP modulo L
ρ ( x ) = ( ρ 1 x + ρ 2 x 2 + + ρ d x d ) ( mod L ) , d N *
is an inverse of the 4-PP in (1) if
π ( ρ ( x ) ) = x ( mod L ) , x { 0 , 1 , , L 1 } .

3. Main Results

The positive integers L will be considered of the form
L = 32 · i = 1 N p p i = 2 5 · i = 1 N p p i or L = 96 · i = 1 N p p i = 2 5 · 3 · i = 1 N p p i ,
with  p 1 , p 2 , , p N p  different prime numbers so that  3 < p 1 < p 2 < < p N p .
To avoid some complicated conditions for the coefficients, if  p i  is a prime such that  3 ( p i 1 )  and  p i 5 i { 1 , 2 , , N p } , or if  p i = 7 , only the following conditions
f 1 0 ,   f 2 = 0 ,   f 3 = 0 ,   f 4 = 0 ( mod p i ) .
will be considered for the 4-PPs’ coefficients.
We denote
i = 1 N p p i = Ψ .

3.1. Coefficients of 4-PPs Modulo a Positive Integer of the Form  32 Ψ  or  96 Ψ

The next lemma gives the possible values of the coefficients for a 4-PP modulo a positive integer of the form (5).
Lemma 1.
Let a positive integer L be of the form given in (5). Then, the possible values for coefficients  f 4 f 3 , and  f 2  for a true different 4-PP fulfilling conditions (6) when  3 ( p i 1 )  or when  p i = 7  are equivalent to those given in Table 2. Coefficient  f 1  will always be odd.
Proof of Lemma 1.
According to Section 3 from [8], a true 4-PP is equivalent to a 4-PP which has the coefficient  f k < L gcd ( L , k ! ) k = 2 , 3 , 4 . Thus, for the positive integer L of the form  L = 32 Ψ , a true 4-PP is equivalent to a 4-PP for which  f 2 < L / 2 = 16 Ψ f 3 < L / 2 = 16 Ψ , and  f 4 < L / 8 = 4 Ψ . For the positive integer L of the form  L = 96 Ψ , a true 4-PP is equivalent to a 4-PP for which  f 2 < L / 2 = 48 Ψ f 3 < L / 6 = 16 Ψ , and  f 4 < L / 24 = 4 Ψ . From the coefficient conditions of a 4-PP in Table 1 and because  Ψ  is odd, we obtain coefficients  f 2 f 3 , and  f 4  from Table 2.
We note that when  L = 32 Ψ  or  L = 96 Ψ , from condition (1) in Table 1 f 1  is odd. □
Because  π ( x )  is a true 4-PP, from Lemma 1, we have that
f 4 = k 4 , f · Ψ , with k 4 , f { 1 , 2 , 3 } f 3 = k 3 , f · 2 Ψ , with k 3 , f { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } f 2 = k 2 , f · Ψ , with k 2 , f = c 2 · k L + k 4 , f , L , k L { 1 , 3 } , c 2 { 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 }
The values of  k 4 , f , L  from (8) are as follows:
k 4 , f , L = 0 , when k L = 1 and k 4 , f { 1 , 3 } , k 4 , f , L = 1 , when k L = 1 and k 4 , f = 2 , k 4 , f , L = 3 k 4 , f , when k L = 3 .
Because  p i  is odd  i { 1 , 2 , , N p } Ψ  from (7) is also odd.
From Table 1 in reference [7], we can see that, if for a prime  p i Ψ  with  3 ( p i 1 )  and  p i > 3 , coefficient  f 3 0 ( mod p i ) , condition  ( f 2 ) 2 = 3 f 1 f 3 ( mod p i )  has to be fulfilled. A similar remark is valid for  p i = 7  when  f 4 0 ( mod 7 ) . Thus, in these cases, coefficients  f 2  and  f 3  are not multiples of  Ψ  and the results derived in the next subsection are not applicable.

3.2. The Inverse PP of a 4-PP Modulo a Positive Integer of the Form  32 Ψ  or  96 Ψ

The next lemma gives the coefficients of an inverse true 4-PP or 5-PP for a true 4-PP, fulfilling conditions (6) when  3 ( p i 1 )  or when  p i = 7 , modulo an integer of the form given in (5). In a previous result, we proved that a 4-PP modulo a positive integer of the form  16 Ψ  or  48 Ψ  always has an inverse true 4-PP. It is interesting that, unlike this previous result, for a 4-PP modulo, a positive integer of the form  32 Ψ  or  96 Ψ , the inverse can be a true 4-PP or a true 5-PP.
In this lemma, an inverse true 4-PP is denoted as in Equation (3), with  d = 4 , and it has the possible coefficients
ρ 4 = k 4 , ρ · Ψ , with k 4 , ρ { 1 , 2 , 3 } ρ 3 = k 3 , ρ · 2 Ψ , with k 3 , ρ { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ρ 2 = k 2 , ρ · Ψ , with k 2 , ρ = c 2 · k L + k 4 , ρ , L , k L { 1 , 3 } , c 2 { 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 }
and the values of  k 4 , ρ , L  from (10) as follows:
k 4 , ρ , L = 0 , when k L = 1 and k 4 , ρ { 1 , 3 } , k 4 , ρ , L = 1 , when k L = 1 and k 4 , ρ = 2 , k 4 , ρ , L = 3 k 4 , ρ , when k L = 3 .
Similarly, an inverse true 5-PP is denoted as in Equation (3), with  d = 5 , and has the following possible coefficients:
ρ 5 = k 5 , ρ · Ψ , with k 5 , ρ { 1 , 2 , 3 } ρ 4 = k 4 , ρ · Ψ , with k 4 , ρ { 0 , 1 , 2 , 3 } ρ 3 = k 3 , ρ · Ψ , with k 3 , ρ { 1 , 3 , 5 , , 15 } when k 5 , ρ { 1 , 3 } and k 3 , ρ { 0 , 2 , 4 , , 14 } when k 5 , ρ = 2 ρ 2 = k 2 , ρ · Ψ , with k 2 , ρ { 1 , 3 , 5 , , 15 } when k 4 , ρ { 1 , 3 } and k 2 , ρ { 0 , 2 , 4 , , 14 } when k 4 , ρ { 0 , 2 }
We note that a 5-PP modulo a positive integer of the form (5) has more possible coefficients, but as we will see, the inverse 5-PP of a 4-PP has coefficients only of the form in (12). The particular conditions for coefficients of a 5-PP, as in (12), are given in Table 3.
We note that, when  5 | Ψ , a true 5-PP is equivalent to a 5-PP which has the coefficient  ρ 5 < L gcd ( L , 5 ! ) . For  L = 32 · k L · Ψ k L { 1 , 3 } , this means that  ρ 5 < 4 · Ψ 5 . But, from (12),  ρ 5 = k 5 , ρ · Ψ , with  k 5 , ρ { 1 , 2 , 3 } , and thus, we have  ρ 5 > 4 · Ψ 5 . However, from Section 3 in [8], an equivalent PP with  ρ ( x ) , with the coefficient  ρ 5 < 4 · Ψ 5 , can be obtained if we subtract from  ρ ( x )  a null polynomial modulo L z ( x ) , with the coefficient  z 5 = k 5 , ρ · 4 · Ψ 5 . Then, the resulting 5-PP has the coefficient  ρ 5 = k 5 , ρ · Ψ 5 , with  k 5 , ρ { 1 , 2 , 3 } , and thus, it is a true 5-PP.
Lemma 2.
Let a positive integer be of the form  L = 32 · k L · Ψ , with  k L { 1 , 3 }  and Ψ as in (7). Then, a true 4-PP  π ( x ) = f 1 x + f 2 x 2 + f 3 x 3 + f 4 x 4 ( mod L ) , fulfilling conditions (6) when  3 ( p i 1 )  or when  p i = 7 , has
1.
A true inverse 4-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 ( mod L )  when  k 4 , f { 1 , 3 }  and  k 3 , f { 1 , 3 , 5 , 7 }  or when  k 4 , f = 2 ;
2.
A true inverse 5-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 + ρ 5 x 5 ( mod L )  when  k 4 , f { 1 , 3 }  and  k 3 , f { 0 , 2 , 4 , 6 } .
Proof of Lemma 2.
π ( x )  has the inverse PP  ρ ( x )  if
π ( ρ ( x ) ) = x ( mod L ) , x { 0 , 1 , , L 1 } .
With Lemma 1, for  ρ ( x )  a 5-PP, after some algebraic manipulations, Equation (13) is equivalent to
( f 1 ρ 1 1 ) · x + Θ ( x ) = 0 ( mod L ) , x { 0 , 1 , , L 1 } ,
where
Θ ( x ) = ( f 1 ρ 2 + f 2 ρ 1 2 ) · x 2 + ( f 1 ρ 3 + 2 f 2 ρ 2 ρ 1 + f 3 ρ 1 3 ) · x 3 + ( f 4 ρ 1 4 + 3 f 3 ρ 1 2 ρ 2 + 2 f 2 ρ 3 ρ 1 + f 2 ρ 2 2 + f 1 ρ 4 ) · x 4 + ( 4 f 4 ρ 1 3 ρ 2 + 3 f 3 ρ 1 2 ρ 3 + 3 f 3 ρ 1 ρ 2 2 + 2 f 2 ρ 4 ρ 1 + 2 f 2 ρ 3 ρ 2 + f 1 ρ 5 ) · x 5 + ( 4 f 4 ρ 1 3 ρ 3 + 6 f 4 ρ 1 2 ρ 2 2 + 3 f 3 ρ 4 ρ 1 2 + 6 f 3 ρ 1 ρ 2 ρ 3 + 2 f 2 ρ 5 ρ 1 + f 3 ρ 2 3 + 2 f 2 ρ 4 ρ 2 + f 2 ρ 3 2 ) · x 6 + ( 4 f 4 ρ 4 ρ 1 3 + 12 f 4 ρ 1 2 ρ 2 ρ 3 + 3 f 3 ρ 5 ρ 1 2 + 4 f 4 ρ 1 ρ 2 3 + 6 f 3 ρ 4 ρ 1 ρ 2 + 3 f 3 ρ 1 ρ 3 2 + 3 f 3 ρ 2 2 ρ 3 + 2 f 2 ρ 5 ρ 2 + 2 f 2 ρ 4 ρ 3 ) · x 7 + ( 4 f 4 ρ 5 ρ 1 3 + 12 f 4 ρ 1 2 ρ 2 ρ 4 + 6 f 4 ρ 1 2 ρ 3 2 + 12 f 4 ρ 1 ρ 2 2 ρ 3 + 6 f 3 ρ 5 ρ 1 ρ 2 + 6 f 3 ρ 1 ρ 3 ρ 4 + f 4 ρ 2 4 + 3 f 3 ρ 2 2 ρ 4 + 3 f 3 ρ 2 ρ 3 2 + 2 f 2 ρ 5 ρ 3 + f 2 ρ 4 2 ) · x 8 + ( 12 f 4 ρ 5 ρ 1 2 ρ 2 + 12 f 4 ρ 1 2 ρ 3 ρ 4 + 12 f 4 ρ 1 ρ 2 2 ρ 4 + 12 f 4 ρ 1 ρ 2 ρ 3 2 + 6 f 3 ρ 5 ρ 1 ρ 3 + 3 f 3 ρ 1 ρ 4 2 + 4 f 4 ρ 2 3 ρ 3 + 3 f 3 ρ 5 ρ 2 2 + 6 f 3 ρ 2 ρ 3 ρ 4 + f 3 ρ 3 3 + 2 f 2 ρ 5 ρ 4 ) · x 9 + ( 12 f 4 ρ 1 2 ρ 3 ρ 5 + 6 f 4 ρ 1 2 ρ 4 2 + 12 f 4 ρ 1 ρ 2 2 ρ 5 + 24 f 4 ρ 1 ρ 2 ρ 3 ρ 4 + 4 f 4 ρ 1 ρ 3 3 + 6 f 3 ρ 1 ρ 4 ρ 5 + 4 f 4 ρ 2 3 ρ 4 + 6 f 4 ρ 2 2 ρ 3 2 + 6 f 3 ρ 2 ρ 3 ρ 5 + 3 f 3 ρ 2 ρ 4 2 + 3 f 3 ρ 3 2 ρ 4 + f 2 ρ 5 2 ) · x 10 + ( 12 f 4 ρ 1 2 ρ 4 ρ 5 + 24 f 4 ρ 1 ρ 2 ρ 3 ρ 5 + 12 f 4 ρ 2 2 ρ 3 ρ 4 + 4 f 4 ρ 2 ρ 3 3 + 12 f 4 ρ 1 ρ 2 ρ 4 2 + 12 f 4 ρ 1 ρ 3 2 ρ 4 + 3 f 3 ρ 1 ρ 5 2 + 6 f 3 ρ 2 ρ 4 ρ 5 + 3 f 3 ρ 3 2 ρ 5 + 3 f 3 ρ 3 ρ 4 2 ) · x 11 + ( 6 f 4 ρ 1 2 ρ 5 2 + 24 f 4 ρ 1 ρ 2 ρ 4 ρ 5 + 12 f 4 ρ 1 ρ 3 2 ρ 5 + 6 f 4 ρ 2 2 ρ 4 2 + 12 f 4 ρ 2 ρ 3 2 ρ 4 + f 4 ρ 3 4 + 12 f 4 ρ 1 ρ 3 ρ 4 2 + 12 f 4 ρ 2 2 ρ 3 ρ 5 + 3 f 3 ρ 2 ρ 5 2 + 6 f 3 ρ 3 ρ 4 ρ 5 + f 3 ρ 4 3 ) · x 12 + ( 12 f 4 ρ 2 2 ρ 4 ρ 5 + 12 f 4 ρ 2 ρ 3 2 ρ 5 + 4 f 4 ρ 3 3 ρ 4 + 12 f 4 ρ 2 ρ 3 ρ 4 2 + 12 f 4 ρ 1 ρ 2 ρ 5 2 + 24 f 4 ρ 1 ρ 3 ρ 4 ρ 5 + 3 f 3 ρ 3 ρ 5 2 + 4 f 4 ρ 1 ρ 4 3 + 3 f 3 ρ 4 2 ρ 5 ) · x 13 + ( 6 f 4 ρ 2 2 ρ 5 2 + 24 f 4 ρ 2 ρ 3 ρ 4 ρ 5 + 6 f 4 ρ 3 2 ρ 4 2 + 4 f 4 ρ 2 ρ 4 3 + 4 f 4 ρ 3 3 ρ 5 + 12 f 4 ρ 1 ρ 3 ρ 5 2 + 12 f 4 ρ 1 ρ 4 2 ρ 5 + 3 f 3 ρ 4 ρ 5 2 ) · x 14 + ( 12 f 4 ρ 3 2 ρ 4 ρ 5 + 4 f 4 ρ 3 ρ 4 3 + 12 f 4 ρ 2 ρ 3 ρ 5 2 + 12 f 4 ρ 2 ρ 4 2 ρ 5 + 12 f 4 ρ 1 ρ 4 ρ 5 2 + f 3 ρ 5 3 ) · x 15 + ( 6 f 4 ρ 3 2 ρ 5 2 + 12 f 4 ρ 3 ρ 4 2 ρ 5 + f 4 ρ 4 4 + 12 f 4 ρ 2 ρ 4 ρ 5 2 + 4 f 4 ρ 1 ρ 5 3 ) · x 16 + ( 4 f 4 ρ 4 3 ρ 5 + 12 f 4 ρ 3 ρ 4 ρ 5 2 + 4 f 4 ρ 2 ρ 5 3 ) · x 17 + ( 6 f 4 ρ 4 2 ρ 5 2 + 4 f 4 ρ 3 ρ 5 3 ) · x 18 + ( 4 f 4 ρ 4 ρ 5 3 ) · x 19 + ( f 4 ρ 5 4 ) · x 20 .
For  ρ ( x )  a 4-PP, Equation (13) is equivalent to Equation (14) with  ρ 5 = 0  in  Θ ( x ) .
We note that the polynomial of degree 20 from the left-hand side of (14) (i.e.,  ( f 1 ρ 1 1 ) · x + Θ ( x ) ) can be easily found by means of a symbolic calculus software.
Because all the coefficients of PPs  f ( x )  and  ρ ( x ) , except for  f 1  and  ρ 1 , are multiples of  Ψ , we have that  Ψ | Θ ( x ) . Therefore, from (14), we have that
( f 1 ρ 1 1 ) · x = 0 ( mod Ψ ) , x { 0 , 1 , , 32 k L 1 } .
From (16), we have that
f 1 ρ 1 = 1 ( mod Ψ ) f 1 ρ 1 = Ψ · k 1 + 1 ( mod 32 k L Ψ ) , with k 1 { 0 , 1 , 2 , , 32 k L 1 }
If  k L = 1 , then  gcd ( f 1 , 32 Ψ ) = 1 . From Theorem 57 in [9], we see that congruence (17) has only one solution in variable  ρ 1 . If  k L = 3 , then  gcd ( f 1 , 96 Ψ ) = 3 . In this case, congruence (17) has three solutions. From these three solutions, only one of them will be valid.
With (17), Equation (14) is fulfilled if and only if
k 1 · x + Θ ( x ) / Ψ = 0 ( mod 32 k L ) , x { 0 , 1 , , 32 k L 1 } ,
We denote  Ψ ( mod 32 k L ) = k Ψ  and write the coefficients  f 2 , f 3 , and  f 4  as in (8) and the coefficients  ρ 2 , ρ 3 , ρ 4 , and  ρ 5  as in (10) or (12). The solutions of Equation (18) in terms of  k 5 , ρ k 4 , ρ k 3 , ρ k 2 , ρ ρ 1 ( mod 32 k L ) , and  k 1  can be found by means of software exhaustive searching for each set of values for  k L k Ψ k 4 , f k 3 , f k 2 , f , and  f 1 ( mod 32 k L ) . These solutions are given in the file available at the link in [10] for  L = 32 Ψ  and at the link in [11] for  L = 96 Ψ . As we can see from these files, the inverse PP of a 4-PP modulo a positive integer of the form (5) is a true 4-PP when  k 4 , f { 1 , 3 }  and  k 3 , f { 1 , 3 , 5 , 7 }  or when  k 4 , f = 2 , and a true 5-PP when  k 4 , f { 1 , 3 }  and  k 3 , f { 0 , 2 , 4 , 6 } .
We note that if at least one of the coefficients  f 2 f 3 , and  f 4  is not a multiple of  Ψ , we cannot derive Equation (18). Thus, in this case, the solutions of Equation (15) in terms of  ρ 1 , ρ 2 , ρ 3 , ρ 4 , and  ρ 5  are much more complicated. □

4. Examples

In this section, we give two examples showing how we can find the inverse 4-PP or 5-PP for a 4-PP modulo a positive integer of the form (5) with  k L = 1  (Examples 1 and 2) and two examples for a positive integer of the form (5) with  k L = 3  (Examples 3 and 4).
Example 1.
Let  π ( x ) = 187 x 4 + 1122 x 3 + 2431 x 2 + 5975 x ( mod 5984 )  be the 4-PP. Because  L = 5984 = 2 5 · 11 · 17 , we have  k L = 1 Ψ = 11 · 17 = 187 k Ψ = 187 ( mod 32 ) = 27 k 4 , f = f 4 / Ψ = 1 k 3 , f = f 3 / ( 2 Ψ ) = 3 k 2 , f = f 2 / Ψ = 13 , and  f 1 ( mod 32 ) = 23 . From the file available at the link in [10], we see that the inverse PP is a 4-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 ( mod L ) , with the coefficients derived from  k 4 , ρ = ρ 4 / Ψ = 1 k 3 , ρ = ρ 3 / ( 2 Ψ ) = 1 k 2 , ρ = ρ 2 / Ψ = 5 ρ 1 ( mod 32 ) = 7 , and  k 1 = 0 . Thus, we have that  ρ 4 = Ψ = 187 ρ 3 = 2 Ψ = 374 , and  ρ 2 = 5 Ψ = 935 . The coefficient  ρ 1  results from Equation (17), with  f 1 = 5975 Ψ = 187 , and  k 1 = 0 , i.e.,  5975 · ρ 1 = 1 ( mod 5984 ) . This equation has only the solution modulo 5984,  ρ 1 = 5319 . So, the inverse 4-PP is  ρ ( x ) = 187 x 4 + 374 x 3 + 935 x 2 + 5319 x ( mod 5984 ) .
Example 2.
Now, let  π ( x ) = 561 x 4 + 748 x 3 + 935 x 2 + 3059 x ( mod 5984 )  be the 4-PP. We have again  k L = 1 Ψ = 187 , and  k Ψ = 27 , but  k 4 , f = f 4 / Ψ = 3 k 3 , f = f 3 / ( 2 Ψ ) = 2 k 2 , f = f 2 / Ψ = 5 , and  f 1 ( mod 32 ) = 19 . From the file available at the link in [10], we have that the inverse PP is a 5-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 + ρ 5 x 5 ( mod L ) , with the coefficients derived from  k 5 , ρ = ρ 5 / Ψ = 2 k 4 , ρ = ρ 4 / Ψ = 3 k 3 , ρ = ρ 3 / Ψ = 10 k 2 , ρ = ρ 2 / Ψ = 5 ρ 1 ( mod 32 ) = 11 , and  k 1 = 16 . Thus, we have that  ρ 5 = 2 Ψ = 374 ρ 4 = 3 Ψ = 561 ρ 3 = 10 Ψ = 1870 , and  ρ 2 = 5 Ψ = 935 . The coefficient  ρ 1  results from Equation (17), with  f 1 = 3059 Ψ = 187 , and  k 1 = 16 , i.e.,  3059 · ρ 1 = 2993 ( mod 5984 ) . This equation has only the solution modulo 5984,  ρ 1 = 4555 . So, the inverse 5-PP is  ρ ( x ) = 374 x 5 + 561 x 4 + 1870 x 3 + 935 x 2 + 4555 x ( mod 5984 ) .
Example 3.
Let  π ( x ) = 759 x 4 + 2530 x 3 + 2277 x 2 + 10,815 x ( mod 24,288 )  be the 4-PP. Because  L = 24,288 = 2 5 · 3 · 11 · 23 , we have  k L = 3 Ψ = 11 · 23 = 253 k Ψ = 253 ( mod 96 ) = 61 k 4 , f = f 4 / Ψ = 3 k 3 , f = f 3 / ( 2 Ψ ) = 5 k 2 , f = f 2 / Ψ = 9 , and  f 1 ( mod 96 ) = 63 . From the file available at the link in [11], we have that the inverse PP is a 4-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 ( mod L ) , with the coefficients derived from  k 4 , ρ = ρ 4 / Ψ = 3 k 3 , ρ = ρ 3 / ( 2 Ψ ) = 1 k 2 , ρ = ρ 2 / Ψ = 33 ρ 1 ( mod 96 ) = 47 , and  k 1 = 80 . Thus, we have that  ρ 4 = 3 Ψ = 759 ρ 3 = 2 Ψ = 506 , and  ρ 2 = 33 Ψ = 8349 . The coefficient  ρ 1  results from Equation (17), with  f 1 = 10,815 Ψ = 253 , and  k 1 = 80 , i.e.,  10 , 815 · ρ 1 = 20,241 ( mod 24,288 ) . This equation has the next three solutions modulo 24,288,  ρ 1 { 3119 ; 11,215 ; 19,311 } . But, from the file available at the link [11], we have that  ρ 1 ( mod 96 ) = 47 . Thus, the only valid solution is  ρ 1 = 3119 . So, the inverse 4-PP is  ρ ( x ) = 759 x 4 + 506 x 3 + 8349 x 2 + 3119 x ( mod 24,288 ) .
Example 4.
Now, let  π ( x ) = 253 x 4 + 2024 x 3 + 11,891 x 2 + 12,087 x ( mod 24,288 )  be the 4-PP. We have again  k L = 3 Ψ = 253 , and  k Ψ = 61 , but  k 4 , f = f 4 / Ψ = 1 k 3 , f = f 3 / ( 2 Ψ ) = 4 k 2 , f = f 2 / Ψ = 47 , and  f 1 ( mod 96 ) = 87 . From the file available at the link in [11], we have that the inverse PP is a 5-PP  ρ ( x ) = ρ 1 x + ρ 2 x 2 + ρ 3 x 3 + ρ 4 x 4 + ρ 5 x 5 ( mod L ) , with the coefficients derived from  k 5 , ρ = ρ 5 / Ψ = 2 k 4 , ρ = ρ 4 / Ψ = 1 k 3 , ρ = ρ 3 / Ψ = 14 k 2 , ρ = ρ 2 / Ψ = 47 ρ 1 ( mod 96 ) = 79 , and  k 1 = 56 . Thus, we have  ρ 5 = 2 Ψ = 506 ρ 4 = Ψ = 253 ρ 3 = 14 Ψ = 3542 , and  ρ 2 = 47 Ψ = 11 , 891 . The coefficient  ρ 1  results from Equation (17), with  f 1 = 12,087 Ψ = 253 , and  k 1 = 56 , i.e.,  12,087 · ρ 1 = 14,169 ( mod 24,288 ) . This equation has the next three solutions modulo 24,288,  ρ 1 { 2095 ; 10,191 ; 18,287 } . But, from the file available at the link [11], we have that  ρ 1 ( mod 96 ) = 79 . Thus, the only valid solution is  ρ 1 = 2095 . So, the inverse 5-PP is  ρ ( x ) = 506 x 5 + 253 x 4 + 3542 x 3 + 11,891 x 2 + 2095 x ( mod 24,288 ) .

5. Remarks

We note that the inverse of a PP can be found by means of the Chinese Remainder Theorem (CRT), finding, firstly, the inverses of the PPs modulo  p i N , p i , for each factor  p i N , p i  from the prime decomposition of the positive integer L. For L decomposed as in (2), we denote the following:
π ( 2 ) ( x ) = π ( x ) ( mod 2 n L , 2 ) π ( 3 ) ( x ) = π ( x ) ( mod 3 n L , 3 ) π ( p i ) ( x ) = π ( x ) ( mod p i ) , i = 1 , 2 , , N p
Then, if the inverses of the PPs in (19) are
ρ ( 2 ) ( x ) = π ( 2 ) ( x ) 1 = i = 0 d ρ , 2 ρ i ( 2 ) · x i ( mod 2 n L , 2 ) ρ ( 3 ) ( x ) = π ( 3 ) ( x ) 1 = i = 0 d ρ , 3 ρ i ( 3 ) · x i ( mod 3 n L , 3 ) ρ ( p i ) ( x ) = π ( p i ) ( x ) 1 = i = 0 d ρ , p i ρ i ( p i ) · x i ( mod p i ) , i = 1 , 2 , , N p
and the maximum degree of the inverse PPs is  d = max { d ρ , 2 , d ρ , 3 , d ρ , p 1 , d ρ , p 2 , , d ρ , p N p } , the coefficients of the inverse PP modulo L are derived by means of the solutions of the next system:
ρ i = ρ i ( 2 ) ( mod 2 n L , 2 ) ρ i = ρ i ( 3 ) ( mod 3 n L , 3 ) ρ i = ρ i ( p 1 ) ( mod p 1 ) ρ i = ρ i ( p 2 ) ( mod p 2 ) ρ i = ρ i ( p N p ) ( mod p i )
for every  i = 0 , 1 , , d . In (21), if  d ρ , p i < d , then the coefficients  ρ i ( p i ) = 0 i > d ρ , p i .
In the following, we explain how the inverse PPs of the 4-PPs can be found from Examples 1 and 4.
Example 1 (continued). For the 4-PP  π ( x ) = 187 x 4 + 1122 x 3 + 2431 x 2 + 5975 x ( mod 5984 ) , because  5984 = 2 5 · 11 · 17 , we have the following:
π ( 2 ) ( x ) = π ( x ) ( mod 2 5 ) = 27 x 4 + 2 x 3 + 31 x 2 + 23 x ( mod 32 ) π ( 11 ) ( x ) = π ( x ) ( mod 11 ) = 2 x ( mod 11 ) π ( 17 ) ( x ) = π ( x ) ( mod 17 ) = 8 x ( mod 17 )
The inverses of the PPs from (22) are as follows:
ρ ( 2 ) ( x ) = π ( 2 ) ( x ) 1 = 3 x 4 + 6 x 3 + 15 x 2 + 7 x ( mod 32 ) ρ ( 11 ) ( x ) = π ( 11 ) ( x ) 1 = 2 1 x ( mod 11 ) = 6 x ( mod 11 ) ρ ( 17 ) ( x ) = π ( 17 ) ( x ) 1 = 8 1 x ( mod 17 ) = 15 x ( mod 17 )
Then, the degree of the inverse PP modulo 5984 is  d = max { 4 , 1 , 1 } = 4 , and the coefficients of this PP ( ρ ( x ) ) result from the following systems:
ρ 1 = ρ 1 ( 2 ) ( mod 32 ) = 7 ( mod 32 ) ρ 1 = ρ 1 ( 11 ) ( mod 11 ) = 6 ( mod 11 ) ρ 1 = ρ 1 ( 17 ) ( mod 17 ) = 15 ( mod 17 ) , with solution ρ 1 = 5319 ( mod 5984 )
ρ 2 = ρ 2 ( 2 ) ( mod 32 ) = 15 ( mod 32 ) ρ 2 = ρ 2 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 2 = ρ 2 ( 17 ) ( mod 17 ) = 0 ( mod 17 ) , with solution ρ 2 = 5423 ( mod 5984 )
ρ 3 = ρ 3 ( 2 ) ( mod 32 ) = 6 ( mod 32 ) ρ 3 = ρ 3 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 3 = ρ 3 ( 17 ) ( mod 17 ) = 0 ( mod 17 ) , with solution ρ 3 = 3366 ( mod 5984 )
and
ρ 4 = ρ 4 ( 2 ) ( mod 32 ) = 3 ( mod 32 ) ρ 4 = ρ 4 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 4 = ρ 4 ( 17 ) ( mod 17 ) = 0 ( mod 17 ) , with solution ρ 4 = 4675 ( mod 5984 ) .
Thus, the inverse PP is  ρ ( x ) = 4675 x 4 + 3366 x 3 + 5423 x 2 + 5319 x ( mod 5984 ) . This polynomial is different from that in Section 4, but the permutation induced by it modulo 5984 is the same. If we add to it the null polynomial  z ( x ) = 1496 x 4 + 2992 x 3 + 1496 x 2 + 0 x ( mod 5984 )  (i.e.,  z ( x ) = 0 x = 0 , 1 , , 5983 ), we obtain the same polynomial:  ρ ( x ) + z ( x ) ( mod 5984 ) = 187 x 4 + 374 x 3 + 935 x 2 + 5319 x ( mod 5984 ) .
Example 4 (continued). For the 4-PP  π ( x ) = 253 x 4 + 2024 x 3 + 11,891 x 2 + 12,087 x ( mod 24,288 ) , because  24,288 = 2 5 · 3 · 11 · 23 , we have the following:
π ( 2 ) ( x ) = π ( x ) ( mod 2 5 ) = 29 x 4 + 8 x 3 + 19 x 2 + 23 x ( mod 32 ) π ( 3 ) ( x ) = π ( x ) ( mod 3 ) = x 4 + 2 x 3 + 2 x 2 ( mod 3 ) = 2 x ( mod 3 ) π ( 11 ) ( x ) = π ( x ) ( mod 11 ) = 9 x ( mod 11 ) π ( 23 ) ( x ) = π ( x ) ( mod 23 ) = 12 x ( mod 23 )
The inverses of the PPs from (28) are as follows:
ρ ( 2 ) ( x ) = π ( 2 ) ( x ) 1 = 2 x 5 + x 4 + 6 x 3 + 15 x 2 + 23 x ( mod 32 ) ρ ( 3 ) ( x ) = π ( 3 ) ( x ) 1 = 2 1 x ( mod 3 ) = 2 x ( mod 3 ) ρ ( 11 ) ( x ) = π ( 11 ) ( x ) 1 = 9 1 x ( mod 11 ) = 5 x ( mod 11 ) ρ ( 23 ) ( x ) = π ( 23 ) ( x ) 1 = 12 1 x ( mod 23 ) = 2 x ( mod 23 )
Then, the degree of the inverse PP modulo 24,288 is  d = max { 5 , 1 , 1 , 1 } = 5 , and the coefficients of this PP ( ρ ( x ) ) result from the following systems:
ρ 1 = ρ 1 ( 2 ) ( mod 32 ) = 23 ( mod 32 ) ρ 1 = ρ 1 ( 3 ) ( mod 3 ) = 2 ( mod 3 ) ρ 1 = ρ 1 ( 11 ) ( mod 11 ) = 5 ( mod 11 ) ρ 1 = ρ 1 ( 23 ) ( mod 23 ) = 2 ( mod 23 ) , with solution ρ 1 = 12 , 215 ( mod 24,288 )
ρ 2 = ρ 2 ( 2 ) ( mod 32 ) = 15 ( mod 32 ) ρ 2 = ρ 2 ( 3 ) ( mod 3 ) = 0 ( mod 3 ) ρ 2 = ρ 2 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 2 = ρ 2 ( 23 ) ( mod 23 ) = 0 ( mod 23 ) , with solution ρ 2 = 6831 ( mod 24,288 )
ρ 3 = ρ 3 ( 2 ) ( mod 32 ) = 6 ( mod 32 ) ρ 3 = ρ 3 ( 3 ) ( mod 3 ) = 0 ( mod 3 ) ρ 3 = ρ 3 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 3 = ρ 3 ( 23 ) ( mod 23 ) = 0 ( mod 23 ) , with solution ρ 3 = 7590 ( mod 24,288 )
ρ 4 = ρ 4 ( 2 ) ( mod 32 ) = 1 ( mod 32 ) ρ 4 = ρ 4 ( 3 ) ( mod 3 ) = 0 ( mod 3 ) ρ 4 = ρ 4 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 4 = ρ 4 ( 23 ) ( mod 23 ) = 0 ( mod 23 ) , with solution ρ 4 = 5313 ( mod 24,288 )
and
ρ 5 = ρ 5 ( 2 ) ( mod 32 ) = 2 ( mod 32 ) ρ 5 = ρ 5 ( 3 ) ( mod 3 ) = 0 ( mod 3 ) ρ 5 = ρ 5 ( 11 ) ( mod 11 ) = 0 ( mod 11 ) ρ 5 = ρ 5 ( 23 ) ( mod 23 ) = 0 ( mod 23 ) , with solution ρ 4 = 10,626 ( mod 24,288 ) .
Thus, the inverse PP is  ρ ( x ) = 10,626 x 5 + 5313 x 4 + 7590 x 3 + 6831 x 2 + 12,215 x ( mod 24,288 ) . This polynomial is different from that in Section 4, but the permutation induced by it modulo 24,288 is the same. If we add to it the null polynomial  z ( x ) = 14,168 x 5 + 19,228 x 4 + 20,240 x 3 + 5060 x 2 + 14,168 x ( mod 24,288 ) , we obtain the same polynomial:  ρ ( x ) + z ( x ) ( mod 24,288 ) = 506 x 5 + 253 x 4 + 3542 x 3 + 11,891 x 2 + 2095 x ( mod 24,288 ) .
In [12], Table I shows the inverses of the normalized PPs of degree  5 . For the positive integers of the form in (2), the normalized PP modulo  p i , with  p i 3 , is  x ( mod p i )  with the simple inverse  x ( mod p i ) . Additionally, the PP  a · x ( mod p i ) a 0 , has the inverse PP  a 1 · x ( mod p i ) . However, the normalized PP modulo 32 is  x 4 + c x 3 + b x 2 + a x , where  a ( mod 2 ) = b ( mod 2 ) = 1  and  c ( mod 2 ) = 0 , and it is not given in that table. Further, finding the inverse PPs by means of normalized PPs and the CRT is not appropriate for deriving the upper bounds of the minimum distance of the turbo codes using PP interleavers, which is the main goal of the results obtained in this paper.

Author Contributions

Conceptualization, L.T. and D.T.; methodology, L.T.; software, L.T.; validation, L.T., D.T. and A.-M.R.; formal analysis, L.T.; investigation, L.T.; resources, L.T.; data curation, L.T.; writing—original draft preparation, L.T.; writing—review and editing, L.T.; visualization, L.T., D.T. and A.-M.R.; supervision, D.T.; project administration, L.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
PPPermutation polynomial
4-PPFourth-degree permutation polynomial
5-PPFifth-degree permutation polynomial
d-PPPermutation polynomial of degree d
CRTChinese Remainder Theorem

References

  1. Dickson, L.E. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. Math. 1896–1897, 11, 65–120. [Google Scholar] [CrossRef]
  2. Cohen, S.D. Permutation Group Theory and Permutation Polynomials. Algebras and Combinatorics; Springer: Singapore, 1999; pp. 133–146. [Google Scholar]
  3. Lidl, R.; Niederriter, H. Finite Fields; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
  4. Sun, J.; Takeshita, O.Y.; Fitz, M.P. Permutation polynomials based deterministic interleavers for turbo codes. In Proceedings of the IEEE International Symposium on Information Theory, Yokohama, Japan, 29 June–4 July 2003; p. 319. [Google Scholar] [CrossRef]
  5. Sun, J.; Takeshita, O.Y. Interleavers for turbo codes using permutation polynomials over integer ring. IEEE Trans. Inform. Theory 2005, 51, 101–119. [Google Scholar] [CrossRef]
  6. Rosnes, E. On the minimum distance of turbo codes with quadratic permutation polynomial interleavers. IEEE Trans. Inform. Theory 2012, 58, 4781–4795. [Google Scholar] [CrossRef]
  7. Trifina, L.; Tarniceriu, D. A coefficient test for fourth degree permutation polynomials over integer rings. AEU Int. J. Electron. Commun. 2016, 70, 1565–1568. [Google Scholar] [CrossRef]
  8. Trifina, L.; Tarniceriu, D. The number of different true permutation polynomial based interleavers under Zhao and Fan sufficient conditions. Telecommun. Syst. 2016, 63, 593–623. [Google Scholar] [CrossRef]
  9. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 4th ed.; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
  10. A Text File with the Variables that Give the Inverse 4-PP or the Inverse 5-PP for a 4-PP Modulo 32Ψ, with Ψ a Product of Prime Numbers Greater Than Three. Available online: http://telecom.etti.tuiasi.ro/tti/papers/Text_files/solutii_kL_kp_k1_f1_r1_inv_4PP_or_5PP_for_4PP_L_32p.txt (accessed on 30 December 2023).
  11. A Text File with the Variables That Give the Inverse 4-PP or the Inverse 5-PP for a 4-PP Modulo 96Ψ, with Ψ a Product of Prime Numbers Greater Than Three. Available online: http://telecom.etti.tuiasi.ro/tti/papers/Text_files/solutii_kL_kp_k1_f1_r1_inv_4PP_or_5PP_for_4PP_L_96p.txt (accessed on 30 December 2023).
  12. Zheng, Y.; Wang, Q.; Wei, W. On inverses of permutation polynomials of small degree over finite fields. IEEE Trans. Inform. Theory 2020, 66, 914–922. [Google Scholar] [CrossRef]
Table 1. Conditions for coefficients  f 1 ,   f 2 ,   f 3 ,   f 4  so that  π ( x )  in (1) is a 4-PP modulo L of the form (2).
Table 1. Conditions for coefficients  f 1 ,   f 2 ,   f 3 ,   f 4  so that  π ( x )  in (1) is a 4-PP modulo L of the form (2).
  p = 2   n L , 2 > 1   f 1 0 ,   ( f 2 + f 4 ) = 0 ,   f 3 = 0 ( mod 2 )
  p = 3   n L , 3 = 1   ( f 1 + f 3 ) 0 ,   ( f 2 + f 4 ) = 0 ( mod 3 )
3 ( p i 1 )   ( p i > 7 )   n L , p i = 1   f 1 0   ,   f 2 = 0 ,   f 3 = 0 ,   f 4 = 0 ( mod p i )
3 ( p i 1 )   ( p i 5 )   n L , p i = 1 f 1 0 ,   f 2 = 0 ,   f 3 = 0 ,   f 4 = 0 ( mod p i )  or  f 2 2 = 3 f 1 f 3 ( mod p i )   f 3 0 ,   f 4 = 0 ( mod p i )
Table 2. Possible values for coefficients  f 4 f 3 , and  f 2  so that  π ( x )  in (1) is a true 4-PP modulo L of the form (5) ( Ψ  is as in (7)).
Table 2. Possible values for coefficients  f 4 f 3 , and  f 2  so that  π ( x )  in (1) is a true 4-PP modulo L of the form (5) ( Ψ  is as in (7)).
L   f 4   f 3   f 2
  32 Ψ Ψ  or  3 Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ Ψ  or  3 Ψ  or  5 Ψ  or  7 Ψ  or  9 Ψ  or  11 Ψ  or  13 Ψ  or  15 Ψ
  2 Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ
96 Ψ      Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ 5 Ψ  or  11 Ψ  or  17 Ψ  or  23 Ψ  or  29 Ψ  or  35 Ψ  or  41 Ψ  or  47 Ψ
  2 Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ 4 Ψ  or  10 Ψ  or  16 Ψ  or  22 Ψ  or  28 Ψ  or  34 Ψ  or  40 Ψ  or  46 Ψ
  3 Ψ 0 or  2 Ψ  or  4 Ψ  or  6 Ψ  or  8 Ψ  or  10 Ψ  or  12 Ψ  or  14 Ψ 3 Ψ  or  9 Ψ  or  15 Ψ  or  21 Ψ  or  27 Ψ  or  33 Ψ  or  39 Ψ  or  45 Ψ
Table 3. Particular conditions for coefficients  ρ 1 , ρ 2 , ρ 3 , ρ 4 , ρ 5  so that  ρ ( x )  in (3), with  d = 5 , is a 5-PP modulo L of the form (2).
Table 3. Particular conditions for coefficients  ρ 1 , ρ 2 , ρ 3 , ρ 4 , ρ 5  so that  ρ ( x )  in (3), with  d = 5 , is a 5-PP modulo L of the form (2).
  p = 2   n L , 2 > 1   ρ 1 0 , ( ρ 2 + ρ 4 ) = 0 , ( ρ 3 + ρ 5 ) = 0 ( mod 2 )
  p = 3   n L , 3 = 1   ( ρ 1 + ρ 3 + ρ 5 ) 0 , ( ρ 2 + ρ 4 ) = 0 ( mod 3 )
  p = 5   n L , 5 = 1   ( ρ 1 + ρ 5 ) 0 ,   ρ 2 = 0 ,   ρ 3 = 0 ,   ρ 4 = 0 ( mod 5 )
  p i > 5   n L , p i = 1   ρ 1 0 ,   ρ 2 = 0 ,   ρ 3 = 0 ,   ρ 4 = 0 ,   ρ 5 = 0 ( mod p i )
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Trifina, L.; Tărniceriu, D.; Rotopănescu, A.-M. Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three. AppliedMath 2024, 4, 383-393. https://doi.org/10.3390/appliedmath4010020

AMA Style

Trifina L, Tărniceriu D, Rotopănescu A-M. Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three. AppliedMath. 2024; 4(1):383-393. https://doi.org/10.3390/appliedmath4010020

Chicago/Turabian Style

Trifina, Lucian, Daniela Tărniceriu, and Ana-Mirela Rotopănescu. 2024. "Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three" AppliedMath 4, no. 1: 383-393. https://doi.org/10.3390/appliedmath4010020

APA Style

Trifina, L., Tărniceriu, D., & Rotopănescu, A. -M. (2024). Inverses for Fourth-Degree Permutation Polynomials Modulo 32Ψ or 96Ψ, with Ψ as a Product of Different Prime Numbers Greater than Three. AppliedMath, 4(1), 383-393. https://doi.org/10.3390/appliedmath4010020

Article Metrics

Back to TopTop