A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration
Abstract
:1. Introduction
2. Derivation
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMI | Enhanced midpoint integration |
CAS | Computer algebra system |
References
- Adegoke, K.; Layeni, O. The higher derivatives of the inverse tangent function and rapidly convergent BBP-type formulas for pi. Appl. Math. E-Notes 2010, 10, 70–75. Available online: https://www.math.nthu.edu.tw/~amen/2010/090408-2.pdf (accessed on 26 February 2023).
- Lampret, V. The higher derivatives of the inverse tangent function revisited. Appl. Math. E-Notes 2011, 11, 224–231. Available online: https://www.math.nthu.edu.tw/~amen/2011/101020-2.pdf (accessed on 26 February 2023).
- Abrarov, S.M.; Quine, B.M. A Simple Identity for Derivatives of the Arctangent Function. arXiv 2016, arXiv:1605.02843. [Google Scholar]
- Abrarov, S.M.; Quine, B.M. A Reformulated Series Expansion of the Arctangent Function. arXiv 2017, arXiv:1701.05098. [Google Scholar]
- Abrarov, S.M.; Quine, B.M. An Iteration Procedure for a Two-Term Machin-like Formula for pi with Small Lehmer’s Measure. arXiv 2017, arXiv:1706.08835. [Google Scholar]
- Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A new form of the Machin-like formula for π by iteration with increasing integers. J. Integer. Seq. 2022, 25, 22.4.5. [Google Scholar]
- Milgram, M. A new series expansion for integral powers of arctangent. Integ. Trans. Spec. Func. 2006, 17, 531–538. [Google Scholar] [CrossRef]
- Sofo, A.; Villacorta, J.C. New identities for the arctangent function. J. Math. Anal. 2012, 3, 1–10. [Google Scholar]
- Zhang, W. New formulae of BBP-type with different moduli. J. Math. Anal. Appl. 2013, 398, 46–60. [Google Scholar] [CrossRef]
- Qi, F.; Zheng, M.-M. Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 2015, 258, 597–607. [Google Scholar] [CrossRef]
- Pilato, L.; Fanucci, L.; Saponara, S. Real-time and high-accuracy arctangent computation using CORDIC and fast magnitude estimation. Electronics 2017, 6, 22. [Google Scholar] [CrossRef]
- Qiao, Q.-X.; Chen, C.-P. Approximations to inverse tangent function. J. Ineq. Appl. 2018, 141. [Google Scholar] [CrossRef] [PubMed]
- Benammar, M.; Alassi, A.; Gastli, A.; Ben-Brahim, L.; Touat, F. New fast arctangent approximation algorithm for generic real-time embedded applications. Sensors 2019, 19, 5148. [Google Scholar] [CrossRef]
- Sofo, A.; Nimbran, A.S. Euler-like sums via powers of log, arctan and arctanh functions. Integ. Trans. Spec. Func. 2020, 31, 966–981. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T. Fast and accurate approximation methods for trigonometric and arctangent calculations for low-performance computers. Electronics 2022, 11, 2285. [Google Scholar] [CrossRef]
- Brent, R.P. Fortran multiple-precision arithmetic. ACM Trans. Math. Soft. 1978, 4, 57–70. [Google Scholar] [CrossRef]
- Brent, R.P. Fast Algorithms for High-Precision Computation of Elementary Functions. Available online: https://maths-people.anu.edu.au/brent/pd/RNC7t4.pdf (accessed on 26 February 2023).
- de Dinechin, F.; Villard, G. High precision numerical accuracy in physics research. Nucl. Instrum. Methods Phys. Res. A 2006, 559, 207–210. [Google Scholar] [CrossRef]
- Bailey, D.H.; Barrio, R.; Borwein, J.M. High-precision computation: Mathematical physics and dynamics. Appl. Math. Comput. 2012, 218, 10106–10121. [Google Scholar] [CrossRef]
- Bailey, D.H.; Borwein, J.M. High-precision arithmetic in mathematical physics. Mathematics 2015, 3, 337–367. [Google Scholar] [CrossRef]
- Kneusel, R.T. Numbers and Computers; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Vestermark, H. Fast Trigonometric Functions for Arbitrary Precision Number. Available online: https://www.researchgate.net/publication/361483599_Fast_Trigonometric_functions_for_Arbitrary_Precision_number?channel=doi&linkId=63fc7e065749505945498e6b&showFulltext=true (accessed on 26 February 2023).
- Johansson, F. Computing Elementary Functions Using Multi-Prime Argument Reduction (LFANT). arXiv 2022, arXiv:2207.02501. [Google Scholar]
- Berggren, J.L.; Borwein, J.M.; Borwein, J. Pi: A Source Book, 3rd ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Calcut, J.S. Gaussian integers and arctangent identities for π. Amer. Math. Mon. 2009, 116, 515–530. [Google Scholar] [CrossRef]
- Nimbran, A.S. On the derivation of Machin-like arctangent identities for computing pi (π). Math. Stud. 2010, 79, 171–186. [Google Scholar]
- Agarwal, R.P.; Agarwal, H.; Sen, K.S. Birth, growth and computation of pi to ten trillion digits. Adv. Differ. Equ. 2013, 100. [Google Scholar] [CrossRef]
- Wetherfield, M.R.; Chien-Lih, H. Computing pi: Lists of Machin-Type (Inverse Cotangent) Identities for pi/4. Available online: http://www.machination.eclipse.co.uk (accessed on 26 February 2023).
- A Wolfram Notebook Playing with Machin-like Formulas. Available online: https://www.wolframcloud.com/obj/exploration/MachinLike.nb (accessed on 26 February 2023).
- Gasull, A.; Luca, F.; Varona, J.L. Three Essays on Machin’s Type Formulas. arXiv 2023, arXiv:2302.00154. [Google Scholar]
- Abrarov, S.M.; Quine, B.M. Identities for the Arctangent Function by Enhanced Midpoint Integration and the High-Accuracy Computation of pi. arXiv 2016, arXiv:1604.03752. [Google Scholar]
- Abrarov, S.M.; Quine, B.M. A formula for pi involving nested radicals. Ramanujan J. 2018, 46, 657–665. [Google Scholar] [CrossRef]
- Abrarov, S.M. Array Numerical Integration by Enhanced Midpoint Rule (File ID: 71037). Available online: https://tinyurl.com/bdf8pt2m (accessed on 26 February 2023).
- Castellanos, D. The ubiquitous π. Math. Mag. 1988, 61, 67–98. [Google Scholar] [CrossRef]
- Chien-Lih, H. An elementary derivation of Euler’s series for the arctangent function. Math. Gaz. 2005, 89, 469–470. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrarov, S.M.; Siddiqui, R.; Jagpal, R.K.; Quine, B.M. A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration. AppliedMath 2023, 3, 395-405. https://doi.org/10.3390/appliedmath3020020
Abrarov SM, Siddiqui R, Jagpal RK, Quine BM. A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration. AppliedMath. 2023; 3(2):395-405. https://doi.org/10.3390/appliedmath3020020
Chicago/Turabian StyleAbrarov, Sanjar M., Rehan Siddiqui, Rajinder Kumar Jagpal, and Brendan M. Quine. 2023. "A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration" AppliedMath 3, no. 2: 395-405. https://doi.org/10.3390/appliedmath3020020
APA StyleAbrarov, S. M., Siddiqui, R., Jagpal, R. K., & Quine, B. M. (2023). A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration. AppliedMath, 3(2), 395-405. https://doi.org/10.3390/appliedmath3020020