Real-World Data Study on Risk Factors Associated with Acute Kidney Damage in Patients Treated with Anti-MRSA Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database and Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2022.
- Levens, R.M.; Morrison, M.A.; Nadle, J.; Petit, S.; Gershman, K.; Ray, S.; Harrison, L.H.; Lynfield, R.; Dumyati, G.; Townes, J.M.; et al. Active Bacterial Core surveillance (ABCs) MRSA Investigators: Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 2007, 298, 1763–1771. [Google Scholar] [CrossRef]
- Hanberger, H.; Walther, S.; Leone, M.; Barie, P.S.; Rello, J.; Lipman, J.; Marshall, J.C.; Anzueto, A.; Sakr, Y.; Pickkers, P.; et al. EPIC II Group of Investigators: Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: Results from the EPIC II study. Int. J. Antimicrob. Agents 2011, 38, 331–335. [Google Scholar] [CrossRef]
- Bloem, A.; Bax, H.I.; Yusuf, E.; Verkaik, N.J. New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J. Clin. Med. 2021, 10, 1743. [Google Scholar] [CrossRef]
- Sinha Ray, A.; Haikal, A.; Hammoud, K.A.; Yu, A.S. Vancomycin and the risk of AKI: A systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 2016, 11, 2132–2140. [Google Scholar] [CrossRef]
- Elyasi, S.; Khalili, H.; Dashti-Khavidaki, S.; Mohammadpour, A. Vancomycin induced nephrotoxicity: Mechanism, incidence, risk factors and special populations. A literature review. Eur. J. Clin. Pharmacol. 2012, 68, 1243–1255. [Google Scholar] [PubMed]
- Dieterich, C.; Puey, A.; Lin, S.; Swezwey, R.; Furimsky, A.; Fairchild, D.; Mirsalis, J.C.; Ng, H.H. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol. Sci. 2009, 107, 258–269. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Perazella, M.A. Drug-induced acute interstitial nephritis. Nat. Rev. Nephrol. 2010, 6, 461–470. [Google Scholar]
- Luque, Y.; Louis, K.; Chantel, J.; Placier, S.; Esteve, E.; Bazin, D.; Rondeau, E.; Letavernier, E.; Wolfromm, A.; Gosset, C.; et al. Vancomycin-associated cast nephropathy. J. Am. Soc. Nephrol. 2017, 28, 1723–1728. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; Kunkel, M.J.; Baruch, A.; McGee, W.T.; Reisman, A.; Chastre, J. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A randomized, controlled study. Clin. Infect. Dis. 2012, 54, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Chavanet, P. The ZEPHyR study: A randomized comparison of linezolid and vancomycin for MRSA pneumonia. Med. Mal. Infect. 2013, 43, 451–455. [Google Scholar] [CrossRef]
- Konychev, A.; Heep, M.; Moritz, R.K.; Kreuter, A.; Shulutko, A.; Fierlbeck, G.; Bouylout, K.; Pathan, R.; Trostmann, U.; Chaves, R.L. Safety and efficacy of daptomycin as first-line treatment for complicated skin and soft tissue infections in elderly patients: An open-label, multicentre, randomized phase IIIb trial. Drugs Aging 2013, 30, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Boucher, H.W.; Corey, G.R.; Abrutyn, E.; Karchmer, A.W.; Rupp, M.E.; Levine, D.P.; Chambers, H.F.; Tally, F.P.; Vigliani, G.A.; et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 2006, 355, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y. Daptomycin-Related Rhabdomyolysis Complicated by Severe Hyperkalemia and Acute Kidney Injury. Cureus 2022, 14, e29764. [Google Scholar] [CrossRef]
- Kazory, A.; Dibadj, K.; Weiner, I.D. Rhabdomyolysis and acute renal failure in a patient treated with daptomycin. J. Antimicrob. Chemother. 2006, 57, 578–579. [Google Scholar] [CrossRef]
- Tian, J.; Xu, Z.; Liu, D.; Huang, X.; Liu, K.; Chen, H.; Chen, Y.; Chen, Y.; Zhang, X.; Han, W.; et al. A comparison of efficacy and safety of linezolid versus vancomycin for the treatment of infections in patients after allogeneic hematopoietic stem cell transplantation. Zhonghua Nei Ke Za Zhi 2016, 55, 97–101. [Google Scholar] [CrossRef]
- Patek, T.M.; Teng, C.; Kennedy, K.E.; Alvarez, C.A.; Frei, C.R. Comparing Acute Kidney Injury Reports Among Antibiotics: A Pharmacovigilance Study of the FDA Adverse Event Reporting System (FAERS). Drug Saf. 2020, 43, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Barberan, J.; Mensa, J.; Artero, A.; Epelde, F.; Rodriguez, J.-C.; Ruiz-Morales, J.; Calleja, J.-L.; Guerra, J.-M.; Martínez-Gil, I.; Giménez, M.-J.; et al. Factors associated with development of nephrotoxicity in patients treated with vancomycin versus daptomycin for severe Gram-positive infections: A practice-based study. Rev. Esp. Quimioter. 2019, 32, 22–30. [Google Scholar] [PubMed]
- Hanrahan, T.P.; Kotapati, C.; Roberts, M.J.; Rowland, J.; Lipman, J.; Roberts, J.A.; Udy, A. Factors associated with vancomycin nephrotoxicity in the critically ill. Anaesth. Intensive Care 2015, 43, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lim, N.R.; Park, H.J.; Yang, J.W.; Kim, M.-J.; Kim, K.; In, Y.W.; Lee, Y.M. Evaluation of risk factors for vancomycin-induced nephrotoxicity. Int. J. Clin. Pharm. 2018, 40, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Hanada, K.; Kanno, A.; Akashi, M.; Itoh, T. Risk factors for vancomycin nephrotoxicity and time course of renal function during vancomycin treatment. Eur. J. Clin. Pharmacol. 2019, 75, 859–866, Erratum in Eur. J. Clin. Pharmacol. 2019, 75, 867. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services, Food and Drug Administration. Use of Real-World Evidence to Support Regulatory Decision-Making for Medical Devices. 31 August 2017. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-real-world-evidence-support-regulatory-decision-making-medical-devices (accessed on 18 August 2022).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Kim, S.Y.; Moon, A. Drug-induced nephrotoxicity and its biomarkers. Biomol. Ther. 2012, 20, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N.H.; Bagga, A.; Cruz, D.; De Maeseneer, J.; Endre, Z.; A Kellum, J.; Liu, K.D.; Mehta, R.L.; Pannu, N.; Van Biesen, W.; et al. AKIN: An increasing global concern. Lancet 2013, 382, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R. Acute renal failure. Semin. Respir. Crit. Care Med. 2011, 32, 639–650. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Risk Investigators. Risk prediction for AKIN in acute medical admissions in the UK. QJM 2019, 112, 197–205. [Google Scholar] [CrossRef]
- Sun, H.; Maderazo, E.G.; Krusell, A.R. Serum protein-binding characteristics of vancomycin. Antimicrob. Agents Chemother. 1993, 37, 1132–1136. [Google Scholar] [CrossRef]
- Yamasaki, K.; Sakurama, K.; Nishi, K.; Watanabe, H.; Maruyama, T.; Seo, H.; Otagiri, M.; Taguchi, K. Characterization of the Interaction of Daptomycin With Site II on Human Serum Albumin. J. Pharm. Sci. 2020, 109, 2919–2924. [Google Scholar] [CrossRef]
- Yagi, T.; Naito, T.; Doi, M.; Nagura, O.; Yamada, T.; Maekawa, M.; Sato, S.; Kawakami, J. Plasma exposure of free linezolid and its ratio to minimum inhibitory concentration varies in critically ill patients. Int. J. Antimicrob. Agents 2013, 42, 329–334. [Google Scholar] [CrossRef]
- Wiedermann, C.J.; Wiedermann, W.; Joannidis, M. Hypoalbuminemia and AKIN: A meta-analysis of observational clinical studies. Intensive Care Med. 2010, 36, 1657–1665. [Google Scholar] [CrossRef]
- Rutter, W.C.; Hall, R.G.; Burgess, D.S. Impact of total body weight on rate of AKIN in patients treated with piperacillin-tazobactam and vancomycin. Am. J. Health Syst. Pharm. 2019, 76, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Pfizer. Zyvox (Linezolid). Available online: https://labeling.pfizer.com/showlabeling.aspx?id=649 (accessed on 17 August 2022).
- Cubist Pharmaceuticals. Cubicin (Daptomycin). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021572s038lbl.pdf (accessed on 17 August 2022).
Vancomycin | Linezolid | Daptomycin | |||
---|---|---|---|---|---|
Total Population n = 3365 | Total Population n = 1918 | Total Population n = 523 | p (Vancomycin vs. Linezolid) | p (Vancomycin vs. Daptomycin) | |
Creatinine Level (mg/dL) | 0.79 (0.60–1.05) | 1.02 (0.67–1.74) | 1.30 (0.89–2.17) | <0.001 | <0.001 |
CKDEPI Level (mL/min/1.73 m²) | 89.57 (66.01–106.31) | 69.71 (35.60–98.66) | 47.97 (28.38–81.87) | <0.001 | <0.001 |
DOT (Days) | 8.00 (6.00–12.00) | 7.00 (5.00–11.00) | 9.00 (6.00–15.00) | <0.001 | <0.001 |
DOT (Stratified) | 0.006 | <0.001 | |||
4–10 Days | 2343 (69.6%) | 1405 (73.3%) | 308 (58.9%) | ||
Over 10 Days | 1022 (30.4%) | 513 (26.7%) | 215 (41.1%) | ||
Albumin Level (g/L) | 30.00 (26.00–34.00) | 27.00 (23.00–31.00) | 28.00 (24.00–33.00) | <0.001 | <0.001 |
White Blood Cell Count (103/µL) | 9.13 (5.49–13.63) | 12.49 (7.82–18.03) | 10.38 (6.96–14.67) | <0.001 | <0.001 |
Neutrophil Count (103/µL) | 6.75 (3.55–10.93) | 10.06 (5.93–15.40) | 7.74 (4.87–12.46) | <0.001 | <0.001 |
Urea Level (mg/dL) | 37.00 (26.00–54.00) | 56.00 (35.00–89.00) | 64.00 (39.00–109.50) | <0.001 | <0.001 |
Weight (kg) | 74.80 (64.00–85.00) | 75.0 (65.8–86.0) | 76.00 (68.00–88.80) | 0.013 | 0.002 |
BMI (kg/m2) | 26.58 (23.44–30.45) | 26.82 (23.84–30.80) | 27.44 (24.38–31.25) | 0.146 | 0.002 |
Sex | 0.002 | <0.001 | |||
Male | 2070 (61.5%) | 1335 (69.6%) | 358 (68.5%) | ||
Female | 1295 (38.5%) | 583 (30.4%) | 165 (31.5%) | ||
ICU Length of Stay (Days) | 14.02 (4.71–36.04) | 19.21 (7.18–42.96) | 14.35 (5.02–38.62) | <0.001 | 0.347 |
ICU Stay (Yes/No) | 1046 (31.1%) | 893 (46.6%) | 247 (47.22%) | <0.001 | <0.001 |
Age (Years) | 65.28 (54.79–74.67) | 67.04 (57.93–75.90) | 68.97 (58.49–75.58) | <0.001 | <0.001 |
Age (Stratified) | <0.001 | 0.002 | |||
<50 Years | 546 (16.2%) | 227 (11.8%) | 58 (11.1%) | ||
≥50 Years | 2819 (83.8%) | 1691 (88.2%) | 465 (88.9%) | ||
15-Day Mortality Rate | 186 (5.5%) | 235 (12.3%) | 51 (9.8%) | <0.001 | <0.001 |
30-Day Mortality Rate | 365 (10.9%) | 373 (19.4%) | 85 (16.3%) | <0.001 | <0.001 |
60-Day Mortality Rate | 538 (16.0%) | 481 (25.1%) | 106 (20.3%) | <0.001 | <0.001 |
Vancomycin | Linezolid | Daptomycin | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Population n = 3365 | Renal Failure n = 496 | No Renal Failure n = 2869 | p | OR | Total Population n = 1918 | Renal Failure n = 367 | No Renal Failure n = 1551 | p | OR | Total Population n= 523 | Renal Failure n = 160 | No Renal Failure n = 363 | p | OR | |
Creatinine Level (mg/dL) | 0.79 (0.60–1.05) | 0.84 (0.57–1.16) | 0.78 (0.60–1.02) | 0.064 | 1.02 (0.67–1.74) | 1.32 (0.87–2.14) | 0.95 (0.66–1.64) | <0.001 | 1.30 (0.89–2.17) | 1.47 (0.99–2.31) | 1.26 (0.86–10.96) | 0.075 | |||
CKDEPI Level (mL/min/1.73 m²) | 89.57 (66.01–106.31) | 85.57 (57.66–105.66) | 90.38 (67.70–106.34) | <0.001 | 69.71 (35.60–98.66) | 53.55 (28.51–84.34) | 75.02 (38.08–100.68) | <0.001 | 47.97 (28.38–81.87) | 44.04 (27.25–71.74) | 58.36 (28.66–85.95) | 0.04 | |||
DOT (Days) | 8.00 (6.00–12.00) | 8.00 (6.00–13.00) | 8.00 (6.00–12.00) | <0.001 | 7.00 (5.00–11.00) | 8.00 (5.00–12.00) | 7.00 (5.00–11.00) | 0.071 | 9.00 (6.00–15.00) | 10.00 (6.00–17.00) | 9.00 (6.00–14.00) | <0.001 | |||
DOT (Stratified) | <0.001 | 1.357 | 0.131 | 1.22 | 0.034 | 1.511 | |||||||||
4–10 Days | 2343 (69.6%) | 317 (64.0%) | 2026 (70.6%) | 1405 (73.3%) | 257 (70.0%) | 1148 (74.0%) | 308 (58.9%) | 83 (51.9%) | 225 (62.0%) | ||||||
Over 10 Days | 1022 (30.4%) | 179 (36.0%) | 843 (29.4%) | 513 (26.7%) | 110 (30.0%) | 403 (26.0%) | 215 (41.1%) | 77 (48.1%) | 138 (38.0%) | ||||||
Albumin Level (g/L) | 30.00 (26.00–34.00) | 29.00 (25.00–34.00) | 30.00 (27.00–34.00) | 0.016 | 27.00 (23.00–31.00) | 27.00 (23.00–31.00) | 27.00 (23.00–31.00) | 0.124 | 28.00 (24.00–33.00) | 26.00 (23.00–31.00) | 29.00 (26.00–33.00) | <0.001 | |||
White Blood Cell Count (103/µL) | 9.13 (5.49–13.63) | 8.96 (5.06–13.76) | 9.19 (5.57–13.59) | 0.424 | 12.49 (7.82–18.03) | 12.44 (7.67–18.90) | 12.50 (7.83–17.63) | 0.547 | 10.38 (6.96–14.67) | 11.03 (5.99–15.19) | 10.28 (7.11–14.52) | 0.689 | |||
Neutrophil Count (103/µL) | 6.75 (3.55–10.93) | 6.53 (3.35–10.78) | 6.80 (3.61–10.94) | 0.283 | 10.06 (5.93–15.40) | 10.57 (5.67–16.16) | 9.92 (5.99–15.27) | 0.454 | 7.74 (4.87–12.46) | 7.92 (4.40–12.47) | 7.72 (5.08–12.43) | 0.849 | |||
Urea Level (mg/dL) | 37.00 (26.00–54.00) | 40.00 (26.00–64.00) | 36.00 (26.00–53.00) | <0.001 | 56.00 (35.00–89.00) | 67.00 (42.00–102.25) | 53.00 (33.00–86.00) | <0.001 | 64.00 (39.00–109.50) | 68.00 (41.00–109.00) | 63.00 (38.00–110.00) | 0.38 | |||
Weight (kg) | 74.80 (64.00–85.00) | 75.00 (65.00–85.00) | 74.50 (64.00–85.00) | 0.503 | 75.0 (65.8–86.0) | 75.0 (68.0–86.0) | 75.0 (65.0–86.0) | 0.133 | 76.00 (68.00–88.80) | 74.00 (65.45–83.40) | 77.00 (69.50–90.00) | 0.051 | |||
BMI (kg/m2) | 26.58 (23.44–30.45) | 27.08 (23.96–31.05) | 26.47 (23.39–30.34) | 0.016 | 26.82 (23.84–30.80) | 27.64 (24.80–30.93) | 26.56 (23.66–30.75) | <0.001 | 27.44 (24.38–31.25) | 26.58 (24.35–30.03) | 27.77 (24.54–31.84) | 0.178 | |||
Sex | 0.842 | 1.021 | 0.02 | 0.735 | 0.919 | 1.022 | |||||||||
Male | 2070 (61.5%) | 303 (61.1%) | 1767 (61.6%) | 1335 (69.6%) | 274 (74.7%) | 1061 (68.4%) | 358 (68.5%) | 109 (68.1%) | 249 (68.6%) | ||||||
Female | 1295 (38.5%) | 193 (38.9%) | 1102 (38.4%) | 583 (30.4%) | 93 (25.3%) | 490 (31.6%) | 165 (31.5%) | 51 (31.9%) | 114 (31.4%) | ||||||
ICU Length of Stay (Days) | 14.02 (4.71–36.04) | 16.95 (5.59–44.04) | 13.30 (4.56–34.85) | 0.039 | 19.21 (7.18–42.96) | 19.26 (10.02–45.05) | 19.04 (6.78–42.16) | 0.319 | 14.35 (5.02–38.62) | 16.37 (4.97–45.90) | 14.02 (5.32–35.19) | 0.468 | |||
ICU Stay (Yes/No) | 1046 (31.1%) | 193 (38.9%) | 868 (30.3%) | <0.001 | 1.505 | 893 (46.6%) | 192 (52.3%) | 701 (45.2%) | 0.015 | 1.33 | 247 (47.22%) | 83 (51.9%) | 164 (45.2%) | 0.183 | 1.307 |
Age (Years) | 65.28 (54.79–74.67) | 66.00 (57.79–75.05) | 65.17 (54.29–74.55) | 0.037 | 67.04 (57.93–75.90) | 68.29 (58.97–76.21) | 66.88 (57.32–75.55) | 0.049 | 68.97 (58.49–75.58) | 71.34 (61.79–77.96) | 68.50 (57.91–75.99) | 0.101 | |||
Age (Stratified) | <0.001 | 1.655 | 0.015 | 1.634 | 0.175 | 1.599 | |||||||||
<50 Years | 546 (16.2%) | 55 (11.1%) | 517 (18.0%) | 227 (11.8%) | 30 (8.2%) | 197 (12.7%) | 58 (11.1%) | 13 (8.1%) | 45 (12.4%) | ||||||
≥50 Years | 2819 (83.8%) | 441 (88.9%) | 2378 (82.0%) | 1691 (88.2%) | 337 (91.8%) | 1354 (87.3%) | 465 (88.9%) | 147 (91.9%) | 318 (87.6%) | ||||||
15-Day Mortality Rate | 186 (5.5%) | 59 (11.9%) | 127 (4.43%) | <0.001 | 2.914 | 235 (12.3%) | 98 (26.7%) | 137 (8.8%) | <0.001 | 3.757 | 51 (9.8%) | 25 (15.6%) | 26 (7.2%) | <0.001 | 2.396 |
30-Day Mortality Rate | 365 (10.9%) | 107 (21.6%) | 258 (8.99%) | <0.001 | 2.783 | 373 (19.4%) | 138 (37.6%) | 235 (15.2%) | <0.001 | 3.372 | 85 (16.3%) | 42 (26.3%) | 43 (11.9%) | <0.001 | 2.643 |
60-Day Mortality Rate | 538 (16.0%) | 139 (28.0%) | 399 (13.9%) | <0.001 | 2.41 | 481 (25.1%) | 162 (44.1%) | 319 (20.6%) | <0.001 | 3.05 | 106 (20.3%) | 56 (35.0%) | 50 (13.8%) | <0.001 | 3.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maray, I.; Álvarez-Asteinza, C.; Macía-Rivas, L.; Fernández-Laguna, C.L.; Alaguero-Calero, M.; Valledor, P.; Fernández, J. Real-World Data Study on Risk Factors Associated with Acute Kidney Damage in Patients Treated with Anti-MRSA Antibiotics. Future Pharmacol. 2024, 4, 30-40. https://doi.org/10.3390/futurepharmacol4010004
Maray I, Álvarez-Asteinza C, Macía-Rivas L, Fernández-Laguna CL, Alaguero-Calero M, Valledor P, Fernández J. Real-World Data Study on Risk Factors Associated with Acute Kidney Damage in Patients Treated with Anti-MRSA Antibiotics. Future Pharmacology. 2024; 4(1):30-40. https://doi.org/10.3390/futurepharmacol4010004
Chicago/Turabian StyleMaray, Ivan, Cristina Álvarez-Asteinza, Lola Macía-Rivas, Clara Luz Fernández-Laguna, Miguel Alaguero-Calero, Pablo Valledor, and Javier Fernández. 2024. "Real-World Data Study on Risk Factors Associated with Acute Kidney Damage in Patients Treated with Anti-MRSA Antibiotics" Future Pharmacology 4, no. 1: 30-40. https://doi.org/10.3390/futurepharmacol4010004
APA StyleMaray, I., Álvarez-Asteinza, C., Macía-Rivas, L., Fernández-Laguna, C. L., Alaguero-Calero, M., Valledor, P., & Fernández, J. (2024). Real-World Data Study on Risk Factors Associated with Acute Kidney Damage in Patients Treated with Anti-MRSA Antibiotics. Future Pharmacology, 4(1), 30-40. https://doi.org/10.3390/futurepharmacol4010004