Noble Gases in Medicine: Current Status and Future Prospects
Abstract
:1. Introduction
2. Xenon: The Multifunctional Noble Gas
2.1. Xenon as an Anaesthetic
2.2. Xenon in Neuroprotection
2.3. Xenon in Imaging
3. Argon: The Emerging Neuroprotectant
Mechanism of Action
4. Helium: Low Density and Respiratory Support
4.1. Heliox Therapy
4.2. Helium’s Role in Imaging
5. Krypton: The Underexplored Noble Gas
5.1. Krypton in Anaesthesia
5.2. Krypton in Medical Imaging
6. Computational Studies on Noble Gases: Predicting Biochemical Targets
6.1. Computational Models of Xenon Binding to Haemoproteins and Other Targets
6.2. Argon and Its Molecular Targets
6.3. Krypton and Computational Approaches
7. Safety and Ethical Considerations
8. Emerging Applications, Research Gaps, and Future Directions
8.1. Xenon as a Treatment for Post-Traumatic Stress Disorder (PTSD) and Depressive Illnesses
8.2. Organ Preservation and Neuroprotection
8.3. High-Altitude and Space Medicine
8.4. Effects on Addiction
8.5. Computational Identification of New Noble Gas Biochemical Targets
8.6. Delivery Systems for Noble Gas Therapeutics
9. Environmental Considerations
10. Conclusions and Perspective
Funding
Conflicts of Interest
References
- Mazej, Z. Noble-Gas Chemistry More than Half a Century after the First Report of the Noble-Gas Compound. Molecules 2020, 25, 3014. [Google Scholar] [CrossRef]
- Winkler, D.A.; Thornton, A.; Farjot, G.; Katz, I. The diverse biological properties of the chemically inert noble gases. Pharmacol. Therapeut. 2016, 160, 44–64. [Google Scholar] [CrossRef]
- Yin, H.; Chen, Z.; Zhao, H.; Huang, H.; Liu, W. Noble gas and neuroprotection: From bench to bedside. Front. Pharmacol. 2022, 13, 1028688. [Google Scholar] [CrossRef]
- McNeill, A.S.; Peterson, K.A.; Dixon, D.A. Polarizabilities of neutral atoms and atomic ions with a noble gas electron configuration. J. Chem. Phys. 2020, 153, 174304. [Google Scholar] [CrossRef]
- Leo, A.; Hansch, C.; Jow, P.Y. Dependence of hydrophobicity of apolar molecules on their molecular volume. J. Med. Chem. 1976, 19, 611–615. [Google Scholar] [CrossRef]
- Weathersby, P.K.; Homer, L.D. Solubility of inert gases in biological fluids and tissues: A review. Undersea Biomed. Res. 1980, 7, 277–296. [Google Scholar]
- Becker, K. One century of radon therapy. Int. J. Low Radiat. 2004, 1, 333–357. [Google Scholar] [CrossRef]
- Joswig, J. Direct Effects of Radon Exposure on the Neural System. A Possible Target for Pain Relief. Ph.D. Thesis, Technische University Darmstadt, Darmstadt, Germany, 2022. [Google Scholar]
- Franks, N.P.; Dickinson, R.; de Sousa, S.L.M.; Hall, A.C.; Lieb, W.R. How does xenon produce anaesthesia? Nature 1998, 396, 324. [Google Scholar] [CrossRef]
- Sanders, R.D.; Franks, N.P.; Maze, M. Xenon: No stranger to anaesthesia. Br. J. Anaesth. 2003, 91, 709–717. [Google Scholar] [CrossRef]
- David, H.N.; Haelewyn, B.; Rouillon, C.; Lecoq, M.; Chazalviel, L.; Apiou, G.; Risso, J.J.; Lemaire, M.; Abraini, J.H. Neuroprotective effects of xenon: A therapeutic window of opportunity in rats subjected to transient cerebral ischemia. FASEB J. 2008, 22, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, R.; Peterson, B.K.; Banks, P.; Simillis, C.; Martin, J.C.; Valenzuela, C.A.; Maze, M.; Franks, N.P. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: Evidence from molecular modeling and electrophysiology. Anesthesiology 2007, 107, 756–767. [Google Scholar] [CrossRef]
- Maze, M.; Laitio, T. Neuroprotective Properties of Xenon. Mol. Neurobiol. 2020, 57, 118–124. [Google Scholar] [CrossRef]
- Preckel, B.; Weber, N.C.; Sanders, R.D.; Maze, M.; Schlack, W.; Warltier, D.C. Molecular Mechanisms Transducing the Anesthetic, Analgesic, and Organ-Protective Actions of Xenon. Anesthesiology 2006, 105, 187–197. [Google Scholar] [CrossRef]
- Chen, J.L.; Chen, L.; Wang, Y.; Wang, X.G.; Zeng, S.W. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations. Sci. Rep. 2015, 5, 17235. [Google Scholar] [CrossRef]
- Al Tmimi, L.; Van Hemelrijck, J.; Van de Velde, M.; Sergeant, P.; Meyns, B.; Missant, C.; Jochmans, I.; Poesen, K.; Coburn, M.; Rex, S. Xenon anaesthesia for patients undergoing off-pump coronary artery bypass graft surgery: A prospective randomized controlled pilot trial. Br. J. Anaesth. 2015, 115, 550–559. [Google Scholar] [CrossRef]
- Nakata, Y.; Goto, T.; Niimi, Y.; Morita, S. Cost analysis of xenon anesthesia: A comparison with nitrous oxide-isoflurane and nitrous oxide-sevoflurane anesthesia. J. Clin. Anesth. 1999, 11, 477–481. [Google Scholar] [CrossRef]
- David, H.N.; Haelewyn, B.; Risso, J.J.; Colloc’h, N.; Abraini, J.H. Xenon is an inhibitor of tissue-plasminogen activator: Adverse and beneficial effects in a rat model of thromboembolic stroke. J. Cereb. Blood Flow. Metab. 2010, 30, 718–728. [Google Scholar] [CrossRef]
- Spaggiari, S.; Kepp, O.; Rello-Varona, S.; Chaba, K.; Adjemian, S.; Pype, J.; Galluzzi, L.; Lemaire, M.; Kroemer, G. Antiapoptotic activity of argon and xenon. Cell Cycle 2013, 12, 2636–2642. [Google Scholar] [CrossRef]
- Lobo, N.; Yang, B.; Rizvi, M.; Ma, D. Hypothermia and xenon: Novel noble guardians in hypoxic–ischemic encephalopathy? J. Neurosci. Res. 2013, 91, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.R.; Oorschot, D.E. Xenon Combined With Hypothermia in Perinatal Hypoxic-Ischemic Encephalopathy: A Noble Gas, a Noble Mission. Pediatr. Neurol. 2018, 84, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Rüegger, C.M.; Davis, P.G.; Cheong, J.L. Xenon as an adjuvant to therapeutic hypothermia in near term and term newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2018, 8, CD012753. [Google Scholar] [CrossRef]
- Zhuang, L.; Yang, T.; Zhao, H.; Fidalgo, A.R.; Vizcaychipi, M.P.; Sanders, R.D.; Yu, B.; Takata, M.; Johnson, M.R.; Ma, D. The protective profile of argon, helium, and xenon in a model of neonatal asphyxia in rats. Crit. Care Med. 2012, 40, 1724–1730. [Google Scholar] [CrossRef]
- Zhao, C.S.; Li, H.; Wang, Z.; Chen, G. Potential application value of xenon in stroke treatment. Med. Gas Res. 2018, 8, 116–120. [Google Scholar] [CrossRef]
- Arola, O.; Saraste, A.; Laitio, R.; Airaksinen, J.; Hynninen, M.; Bäcklund, M.; Ylikoski, E.; Wennervirta, J.; Pietilä, M.; Roine, R.O.; et al. Inhaled Xenon Attenuates Myocardial Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Xe-Hypotheca Trial. J. Am. Coll. Cardiol. 2017, 70, 2652–2660. [Google Scholar] [CrossRef]
- Lilburn, D.M.L.; Pavlovskaya, G.E.; Meersmann, T. Perspectives of hyperpolarized noble gas MRI beyond 3He. J. Magn. Reson. 2013, 229, 173–186. [Google Scholar] [CrossRef]
- Qing, K.; Altes, T.A.; Mugler, J.P., 3rd; Mata, J.F.; Tustison, N.J.; Ruppert, K.; Bueno, J.; Flors, L.; Shim, Y.M.; Zhao, L.; et al. Hyperpolarized Xenon-129: A New Tool to Assess Pulmonary Physiology in Patients with Pulmonary Fibrosis. Biomedicines 2023, 11, 1533. [Google Scholar] [CrossRef]
- Chacon-Caldera, J.; Maunder, A.; Rao, M.; Norquay, G.; Rodgers, O.I.; Clemence, M.; Puddu, C.; Schad, L.R.; Wild, J.M. Dissolved hyperpolarized xenon-129 MRI in human kidneys. Magn. Reson. Med. 2020, 83, 262–270. [Google Scholar] [CrossRef]
- Nowrangi, D.S.; Tang, J.; Zhang, J.H. Argon gas: A potential neuroprotectant and promising medical therapy. Med. Gas Res. 2014, 4, 3. [Google Scholar] [CrossRef]
- Abraini, J.H.; Kriem, B.; Balon, N.; Rostain, J.C.; Risso, J.J. Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth. Analg. 2003, 96, 746–749, table of contents. [Google Scholar] [CrossRef]
- Nespoli, F.; Redaelli, S.; Ruggeri, L.; Fumagalli, F.; Olivari, D.; Ristagno, G. A complete review of preclinical and clinical uses of the noble gas argon: Evidence of safety and protection. Ann. Card. Anaesth. 2019, 22, 122–135. [Google Scholar] [CrossRef]
- Lemoine, S.; Blanchart, K.; Souplis, M.; Lemaitre, A.; Legallois, D.; Coulbault, L.; Simard, C.; Allouche, S.; Abraini, J.H.; Hanouz, J.L.; et al. Argon Exposure Induces Postconditioning in Myocardial Ischemia-Reperfusion. J. Cardiovasc. Pharmacol. Ther. 2017, 22, 564–573. [Google Scholar] [CrossRef]
- Loetscher, P.D.; Rossaint, J.; Rossaint, R.; Weis, J.; Fries, M.; Fahlenkamp, A.; Ryang, Y.M.; Grottke, O.; Coburn, M. Argon: Neuroprotection in in vitro models of cerebral ischemia and traumatic brain injury. Crit. Care 2009, 13, R206. [Google Scholar] [CrossRef]
- Ulbrich, F.; Schallner, N.; Coburn, M.; Loop, T.; Lagreze, W.A.; Biermann, J.; Goebel, U. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats. PLoS ONE 2014, 9, e115984. [Google Scholar] [CrossRef]
- Farooq, U.; Riaz, H.H.; Munir, A.; Zhao, M.; Tariq, A.; Islam, M.S. Application of heliox for optimized drug delivery through respiratory tract. Phys. Fluids 2023, 35, 103321. [Google Scholar] [CrossRef]
- Borglund Hemph, A.; Jakobsson, J.G. Helium–oxygen mixture for treatment in upper airway obstruction; a mini-review. J. Acute Med. 2016, 6, 77–81. [Google Scholar] [CrossRef]
- Sharma, M.; Wyszkiewicz, P.V.; Desaigoudar, V.; Guo, F.; Capaldi, D.P.I.; Parraga, G. Quantification of pulmonary functional MRI: State-of-the-art and emerging image processing methods and measurements. Phys. Med. Biol. 2022, 67, 22TR01. [Google Scholar] [CrossRef]
- Foo, C.T.; Langton, D.; Thompson, B.R.; Thien, F. Functional lung imaging using novel and emerging MRI techniques. Front. Med. 2023, 10, 1060940. [Google Scholar] [CrossRef]
- Scheid, S.; Goebel, U.; Ulbrich, F. Neuroprotection Is in the Air—Inhaled Gases on Their Way to the Neurons. Cells 2023, 12, 2480. [Google Scholar] [CrossRef]
- Dickinson, R.; Franks, N.P. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit. Care 2010, 14, 229. [Google Scholar] [CrossRef]
- Bailey, D.L.; Roach, P.J. A Brief History of Lung Ventilation and Perfusion Imaging Over the 50-Year Tenure of the Editors of Seminars in Nuclear Medicine. Semin. Nucl. Med. 2020, 50, 75–86. [Google Scholar] [CrossRef]
- Winkler, D.A.; Warden, A.C.; Prange, T.; Colloc’h, N.; Thornton, A.W.; Ramirez-Gil, J.F.; Farjot, G.; Katz, I. Massive in Silico Study of Noble Gas Binding to the Structural Proteome. J. Chem. Inf. Model. 2019, 59, 4844–4854. [Google Scholar] [CrossRef]
- Hancock, J.T.; Russell, G.; Craig, T.J.; May, J.; Morse, H.R.; Stamler, J.S. Understanding Hydrogen: Lessons to Be Learned from Physical Interactions between the Inert Gases and the Globin Superfamily. Oxygen 2022, 2, 578–590. [Google Scholar] [CrossRef]
- Winkler, D.A.; Farjot, G.; Katz, I.; Thornton, A. Decoding the rich biological properties of noble gases: How well can we predict noble gas binding to diverse proteins? ChemMedChem 2018, 13, 1931–1938. [Google Scholar] [CrossRef]
- Colloc’h, N.; Carpentier, P.; Montemiglio, L.C.; Vallone, B.; Prange, T. Mapping Hydrophobic Tunnels and Cavities in Neuroglobin with Noble Gas under Pressure. Biophys. J. 2017, 113, 2199–2206. [Google Scholar] [CrossRef]
- Tilton, R.F.; Singh, U.C.; Weiner, S.J.; Connolly, M.L.; Kuntz, I.D.; Kollman, P.A.; Max, N.; Case, D.A. Computational studies of the interaction of myoglobin and xenon. J. Mol. Biol. 1986, 192, 443–456. [Google Scholar] [CrossRef]
- Cohen, J.; Arkhipov, A.; Braun, R.; Schulten, K. Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys. J. 2006, 91, 1844–1857. [Google Scholar] [CrossRef]
- Cohen, J.; Olsen, K.W.; Schulten, K. Chapter 22—Finding Gas Migration Pathways in Proteins Using Implicit Ligand Sampling. In Methods in Enzymology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2008; Volume 437, pp. 439–457. [Google Scholar]
- Schotte, F.; Lim, M.; Jackson, T.A.; Smirnov, A.V.; Soman, J.; Olson, J.S.; Phillips, G.N., Jr.; Wulff, M.; Anfinrud, P.A. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 2003, 300, 1944–1947. [Google Scholar] [CrossRef]
- Schotte, F.; Soman, J.; Olson, J.S.; Wulff, M.; Anfinrud, P.A. Picosecond time-resolved X-ray crystallography: Probing protein function in real time. J. Struct. Biol. 2004, 147, 235–246. [Google Scholar] [CrossRef]
- Cukras, J.; Sadlej, J. Towards Quantum-Chemical Modeling of the Activity of Anesthetic Compounds. Int. J. Mol. Sci. 2021, 22, 9272. [Google Scholar] [CrossRef]
- Le Nogue, D.; Lavaur, J.; Milet, A.; Ramirez-Gil, J.F.; Katz, I.; Lemaire, M.; Farjot, G.; Hirsch, E.C.; Michel, P.P. Neuroprotection of dopamine neurons by xenon against low-level excitotoxic insults is not reproduced by other noble gases. J. Neural Transm. 2020, 127, 27–34. [Google Scholar] [CrossRef]
- Liu, L.T.; Xu, Y.; Tang, P. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations. J. Phys. Chem. B 2010, 114, 9010–9016. [Google Scholar] [CrossRef]
- Hammami, I.; Farjot, G.; Naveau, M.; Rousseaud, A.; Prangé, T.; Katz, I.; Colloc’h, N. Method for the Identification of Potentially Bioactive Argon Binding Sites in Protein Families. J. Chem. Inf. Model. 2022, 62, 1318–1327. [Google Scholar] [CrossRef]
- Melnikov, I.; Orekhov, P.; Rulev, M.; Kovalev, K.; Astashkin, R.; Bratanov, D.; Ryzhykau, Y.; Balandin, T.; Bukhdruker, S.; Okhrimenko, I.; et al. High-pressure crystallography shows noble gas intervention into protein-lipid interaction and suggests a model for anaesthetic action. Commun. Biol. 2022, 5, 360. [Google Scholar] [CrossRef]
- Shao, J.; Meng, L.; Yang, Z.; Yu, P.; Song, L.; Gao, Y.; Gong, M.; Meng, C.; Shi, H. Xenon produces rapid antidepressant- and anxiolytic-like effects in lipopolysaccharide-induced depression mice model. NeuroReport 2020, 31, 387–393. [Google Scholar] [CrossRef]
- Irani, Y.; Pype, J.L.; Martin, A.R.; Chong, C.F.; Daniel, L.; Gaudart, J.; Ibrahim, Z.; Magalon, G.; Lemaire, M.; Hardwigsen, J. Noble gas (argon and xenon)-saturated cold storage solutions reduce ischemia-reperfusion injury in a rat model of renal transplantation. Nephron Extra 2011, 1, 272–282. [Google Scholar] [CrossRef]
- Almeida, S.; Snyder, W.; Shah, M.; Fisher, J.; Marsh, C.; Hawkes, A.; Gorial, D.; DeWolf, S.; McKay, D.B. Revolutionizing deceased donor transplantation: How new approaches to machine perfusion broadens the horizon for organ donation. Transplant. Rep. 2024, 9, 100160. [Google Scholar] [CrossRef]
- Antonova, V.V.; Silachev, D.N.; Plotnikov, E.Y.; Pevzner, I.B.; Yakupova, E.I.; Pisarev, M.V.; Boeva, E.A.; Tsokolaeva, Z.I.; Lyubomudrov, M.A.; Shumov, I.V.; et al. Neuroprotective Effects of Krypton Inhalation on Photothrombotic Ischemic Stroke. Biomedicines 2024, 12, 635. [Google Scholar] [CrossRef]
- Chevrolet, J.C. Helium oxygen mixtures in the intensive care unit. Crit. Care 2001, 5, 179–181. [Google Scholar] [CrossRef]
- Prisk, G.K. Pulmonary challenges of prolonged journeys to space: Taking your lungs to the moon. Med. J. Aust. 2019, 211, 271–276. [Google Scholar] [CrossRef]
- WADA 2024 List of Prohibited Substances and Methods. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 29 October 2024).
- Bezuglov, E.; Morgans, R.; Khalikov, R.; Bertholz, V.; Emanov, A.; Talibov, O.; Astakhov, E.; Lazarev, A.; Shoshorina, M. Effect of xenon and argon inhalation on erythropoiesis and steroidogenesis: A systematic review. Heliyon 2023, 9, e15837. [Google Scholar] [CrossRef]
- David, H.N.; Dhilly, M.; Degoulet, M.; Poisnel, G.; Meckler, C.; Vallee, N.; Blatteau, J.E.; Risso, J.J.; Lemaire, M.; Debruyne, D.; et al. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens. Transl. Psychiatry 2015, 5, e594. [Google Scholar] [CrossRef]
- Tsygankov, B.D.; Shamov, S.A.; Khritinin, D.F.; Dobrovolskaya, U.V.; Yaltonskaya, A.V. Xenontherapy of withdrawal syndrom among the patients with opioid dependence. Eur. Psychiatry 2011, 26, 117. [Google Scholar] [CrossRef]
- Vengeliene, V.; Bessiere, B.; Pype, J.; Spanagel, R. The Effects of Xenon and Nitrous Oxide Gases on Alcohol Relapse. Alcohol. Clin. Exp. Res. 2014, 38, 557–563. [Google Scholar] [CrossRef]
- McGuigan, S.; Marie, D.J.; O’Bryan, L.J.; Flores, F.J.; Evered, L.; Silbert, B.; Scott, D.A. The cellular mechanisms associated with the anesthetic and neuroprotective properties of xenon: A systematic review of the preclinical literature. Front. Neurosci. 2023, 17, 1225191. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Durairaj, J.; de Ridder, D.; van Dijk, A.D.J. Beyond sequence: Structure-based machine learning. Comput. Struct. Biotechnol. J. 2023, 21, 630–643. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024, 52, D368–D375. [Google Scholar] [CrossRef]
- McComb, M.; Bies, R.; Ramanathan, M. Machine learning in pharmacometrics: Opportunities and challenges. Br. J. Clin. Pharmacol. 2022, 88, 1482–1499. [Google Scholar] [CrossRef]
- Naqvi, S.; Panghal, A.; Flora, S.J.S. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front. Neurosci. 2020, 14, 494. [Google Scholar] [CrossRef]
- Fix, S.M.; Borden, M.A.; Dayton, P.A. Therapeutic gas delivery via microbubbles and liposomes. J. Contr. Release 2015, 209, 139–149. [Google Scholar] [CrossRef]
- Peng, T.; Britton, G.L.; Kim, H.; Cattano, D.; Aronowski, J.; Grotta, J.; McPherson, D.D.; Huang, S.L. Therapeutic time window and dose dependence of xenon delivered via echogenic liposomes for neuroprotection in stroke. CNS Neurosci. Ther. 2013, 19, 773–784. [Google Scholar] [CrossRef]
- Maus, A.; Strait, L.; Zhu, D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Eng. Regen. 2021, 2, 31–46. [Google Scholar] [CrossRef]
- Goto, T.; Nakata, Y.; Morita, S. Will Xenon Be a Stranger or a Friend?: The Cost, Benefit, and Future of Xenon Anesthesia. Anesthesiology 2003, 98, 1–2. [Google Scholar] [CrossRef]
- McGain, F.; Muret, J.; Lawson, C.; Sherman, J.D. Environmental sustainability in anaesthesia and critical care. Br. J. Anaesth. 2020, 125, 680–692. [Google Scholar] [CrossRef]
Gas | Atomic Radius (pm) | Polarizability (Å3) [4] | logP Octanol/Water [5] | Aqueous Solubility 20 °C (cm3/kg) [2] | Blood Solubility 37 °C (cm3/kg) [6] |
---|---|---|---|---|---|
He | 31 | 0.20 | 0.28 | 8.6 | 8.0 |
Ne | 38 | 0.40 | 0.28 | 10.5 | 9.3 |
Ar | 71 | 1.66 | 0.74 | 33.6 | 30.0 |
Kr | 88 | 2.51 | 0.89 | 59.4 | 60 |
Xe | 108 | 4.06 | 1.28 | 108.1 | 146 |
Rn | 120 | 5.01 | … | 230 | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winkler, D.A. Noble Gases in Medicine: Current Status and Future Prospects. Oxygen 2024, 4, 421-431. https://doi.org/10.3390/oxygen4040026
Winkler DA. Noble Gases in Medicine: Current Status and Future Prospects. Oxygen. 2024; 4(4):421-431. https://doi.org/10.3390/oxygen4040026
Chicago/Turabian StyleWinkler, David A. 2024. "Noble Gases in Medicine: Current Status and Future Prospects" Oxygen 4, no. 4: 421-431. https://doi.org/10.3390/oxygen4040026
APA StyleWinkler, D. A. (2024). Noble Gases in Medicine: Current Status and Future Prospects. Oxygen, 4(4), 421-431. https://doi.org/10.3390/oxygen4040026