The Role of ROS in Electronic Cigarette- and Heated Tobacco Product-Induced Damage
Abstract
:1. Introduction
2. ROS Generation in HTP and E-Cig Consumption
Device | Nmol H2O2/Session | Radicals/Puff |
---|---|---|
CC | 46.83 [23] | >1016 [24] |
E-cig | 25–35 [20] | 5.6 × 1013 [22] |
HTP (IQOS) | 6.26 [23] | N.R. |
References | Device | Type of Study | Exposure in… | Key Findings |
---|---|---|---|---|
Rubenstein et al. 2015 [27] | E-cig | in vitro | Kupffer cells | ⭡ ROS ⭡ xanthine oxidase activity |
Sussan et al. 2015 [28] | E-cig | in vivo | Lung | ⭡ lipid hydroperoxides |
Carnevale et al. 2016 [31] | E-cig | clinical | Human subjects | ⭡ NOX2-derived peptide, 8-iso-prostaglandin F2α ⭣ NO bioavailability ⭣ vitamin E levels |
El Golli et al. 2016 [29] | E-cig | in vivo | Liver | ⭡ lipid hydroperoxides, thiols ⭣ SOD, catalase activity |
Chatterjee et al. 2018 [32] | E-cig | in vitro clinical | HPMVEC (pulmonary endothelium) Human subjects | ⭡ ROS ⭡ ICAM-1 ⭡ C-reactive protein ⭡ ICAM-1 ⭣ NO metabolites |
Lee et al. 2018 [11] | E-cig | in vivo in vitro | lung, bladder, heart BEAS-2B cells, bladder cells | ⭡ DNA damage ⭣ repair protein XPC and OGG1/2 ⭡ DNA damage ⭣ repair protein XPC and OGG1/2 |
Cirillo et al. 2019 [9] | E-cig | in vivo | lung | ⭡ ROS ⭡ lipid hydroperoxides, carbonylated proteins ⭡ xanthine oxidase, GSSG reductase activity ⭡ CYP1A1, CYP2E1, CYP2B1/2. CYP2A1/2 activity (CYP450) ⭣ FRAP, catalase, SOD, CYP3A1/2 activity |
Pearce et al. 2020 [26] | E-cig | in vitro | NHBE (bronchial epithelium) | ⭡ ROS ⭡ DNA damage ⭣ total GSH content ⭣ metabolic capacity |
Vivarelli et al. 2021 [14] | HTP | in vivo | lung | ⭡ ROS ⭡ NQO1, catalase activity ⭡ lipid hydroperoxides, carbonylated proteins ⭡ CYP1A1, CYP2E1, CYP2B1/2. CYP2A1/2 activity (CYP450) ⭡ p38, ERK1/2, JNK expression ⭡ DNA damage ⭣ FRAP, UDPGT activity ⭣ NRF2 expression |
Sawa et al. 2022 [39] | HTP | in vivo | alveolar macrophages | ⭡ GSSG/total GSH ⭣ reduced GSH content |
Muratani et al. 2023 [35] | HTP | in vitro | NHBE (bronchial epithelium) | ⭡ ROS ⭣ total GSH content |
Begum e al. 2023 [36] | E-cig | in vitro | A549 (alveolar epithelium) | ⭡ ROS ⭡ cytosolic NADH oxidase, SOD, catalase, and GSH-Px mRNA expression |
Granata et al. 2023 [40] | HTP | in vivo | liver | ⭡ ROS ⭡ mitochondrial mass, carbonylated proteins, lipid hydroperoxides ⭡ DT-diaphorase, catalase, xanthine oxidase, UDPGT activity ⭡ CYP1A1, CYP2E1, CYP2B1/2. CYP2A1/2 activity (CYP450) ⭡ p38 expression ⭣ total GSH content ⭣ NRF2 expression |
Kagemichi et al. 2024 [37] | HTP | in vitro | OSCC (oral squamous cell carcinoma) | ⭡ ROS ⭡ p38 phosphorylation ⭡ intracellular Ca2+ concentration |
3. Oxidative Stress Related to ENDS Exposure
4. Inflammation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMs | alveolar macrophages |
CC | conventional cigarette |
COPD | chronic obstructive pulmonary disease |
DCFH-DA | dichlorofluorescein diacetate |
e-cig | electronic-cigarette |
ENDS | Electron Nicotine Delivery System |
EVALI | E-cigs or Vaping Associated Lung Injury |
EVs | Extracellular Vesicles |
FEV1 | forced expiratory volume |
GSH | glutathione |
HMGB1 | high-mobility group box 1 |
HPMVECs | human pulmonary microvascular endothelial cells |
HTPs | heated tobacco products |
ICAM-1 | intercellular cell adhesion molecule-1 |
IL | interleukin |
IgE | immunoglubin E |
mPTP | mitochondrial permeability transition pore |
MRTP | Modified Risk Tobacco Products |
NETs | Neutrophil extracellular traps |
NHBE | human bronchial epithelial cells |
NLRP3 | NLR family pyrin domain containing 3 |
OS | oxidative stress |
OSCC | oral squamous cell carcinoma |
ROS | radical oxygen species |
TLR3 | Toll-like receptor 3 |
References
- Rom, O.; Pecorelli, A.; Valacchi, G.; Reznick, A.Z. Are E-Cigarettes a Safe and Good Alternative to Cigarette Smoking? Ann. N. Y. Acad. Sci. 2015, 1340, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 17 June 2024).
- Vivarelli, F.; Granata, S.; Rullo, L.; Mussoni, M.; Candeletti, S.; Romualdi, P.; Fimognari, C.; Cruz-Chamorro, I.; Carrillo-Vico, A.; Paolini, M.; et al. On the Toxicity of E-Cigarettes Consumption: Focus on Pathological Cellular Mechanisms. Pharmacol. Res. 2022, 182, 106315. [Google Scholar] [CrossRef] [PubMed]
- Bitzer, Z.T.; Goel, R.; Trushin, N.; Muscat, J.; Richie, J.P., Jr. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem. Res. Toxicol. 2020, 33, 1882–1887. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.A.; Eissenberg, T. Science and the Evolving Electronic Cigarette. Prev. Med. 2015, 80, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Jaklevic, M.C. First Tobacco Product Receives “Reduced Exposure” Authorization. JAMA 2020, 324, 622. [Google Scholar] [CrossRef]
- WHO. Report on the Global Tobacco Epidemic 2021: Addressing New and Emerging Products. Available online: https://www.who.int/publications/i/item/9789240032095 (accessed on 17 June 2024).
- Canistro, D.; Vivarelli, F.; Cirillo, S.; Babot Marquillas, C.; Buschini, A.; Lazzaretti, M.; Marchi, L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Lodovici, M.; et al. E-Cigarettes Induce Toxicological Effects That Can Raise the Cancer Risk. Sci. Rep. 2017, 7, 2028. [Google Scholar] [CrossRef]
- Cirillo, S.; Vivarelli, F.; Turrini, E.; Fimognari, C.; Burattini, S.; Falcieri, E.; Rocchi, M.B.L.; Cardenia, V.; Rodriguez-Estrada, M.T.; Paolini, M.; et al. The Customizable E-Cigarette Resistance Influences Toxicological Outcomes: Lung Degeneration, Inflammation, and Oxidative Stress-Induced in a Rat Model. Toxicol. Sci. 2019, 172, 132–145. [Google Scholar] [CrossRef]
- Middlekauff, H.R. Cardiovascular Impact of Electronic-Cigarette Use. Trends Cardiovasc. Med. 2020, 30, 133–140. [Google Scholar] [CrossRef]
- Lee, H.-W.; Park, S.-H.; Weng, M.-W.; Wang, H.-T.; Huang, W.C.; Lepor, H.; Wu, X.-R.; Chen, L.-C.; Tang, M.-S. E-Cigarette Smoke Damages DNA and Reduces Repair Activity in Mouse Lung, Heart, and Bladder as Well as in Human Lung and Bladder Cells. Proc. Natl. Acad. Sci. USA 2018, 115, E1560–E1569. [Google Scholar] [CrossRef]
- Duan, Z.; Le, D.; Ciceron, A.C.; Dickey-Chasins, R.; Wysota, C.N.; Bar-Zeev, Y.; Levine, H.; Abroms, L.C.; Romm, K.F.; Berg, C.J. ‘It’s like If a Vape Pen and a Cigarette Had a Baby’: A Mixed Methods Study of Perceptions and Use of IQOS among US Young Adults. Health Educ. Res. 2022, 37, 364–377. [Google Scholar] [CrossRef]
- East, K.A.; Tompkins, C.N.E.; McNeill, A.; Hitchman, S.C. “I Perceive It to Be Less Harmful, I Have No Idea If It Is or Not:” a Qualitative Exploration of the Harm Perceptions of IQOS among Adult Users. Harm Reduct. J. 2021, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, F.; Canistro, D.; Cirillo, S.; Elias, R.J.; Granata, S.; Mussoni, M.; Burattini, S.; Falcieri, E.; Turrini, E.; Fimognari, C.; et al. Unburned Tobacco Cigarette Smoke Alters Rat Ultrastructural Lung Airways and DNA. Nicotine Tob. Res. 2021, 23, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, S. Mitochondrial Uncoupling, ROS Generation and Cardioprotection. Biochim. Biophys. Acta (BBA) Bioenerg. 2018, 1859, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Klaunig, J.E.; Wang, Z.; Pu, X.; Zhou, S. Oxidative Stress and Oxidative Damage in Chemical Carcinogenesis. Toxicol. Appl. Pharmacol. 2011, 254, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Borgerding, M.; Klus, H. Analysis of Complex Mixtures--Cigarette Smoke. Exp. Toxicol. Pathol. 2005, 57 (Suppl. S1), 43–73. [Google Scholar] [CrossRef]
- Ratajczak, A.; Feleszko, W.; Smith, D.M.; Goniewicz, M. How Close Are We to Definitively Identifying the Respiratory Health Effects of E-Cigarettes? Expert Rev. Respir. Med. 2018, 12, 549–556. [Google Scholar] [CrossRef]
- Granata, S.; Vivarelli, F.; Morosini, C.; Canistro, D.; Paolini, M.; Fairclough, L.C. Toxicological Aspects Associated with Consumption from Electronic Nicotine Delivery System (ENDS): Focus on Heavy Metals Exposure and Cancer Risk. Int. J. Mol. Sci. 2024, 25, 2737. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Yao, H.; Gerloff, J.; Ossip, D.J.; McIntosh, S.; Robinson, R.; Rahman, I. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung. PLoS ONE 2015, 10, e0116732. [Google Scholar] [CrossRef]
- Goel, R.; Durand, E.; Trushin, N.; Prokopczyk, B.; Foulds, J.; Elias, R.J.; Richie, J.P., Jr. Highly Reactive Free Radicals in Electronic Cigarette Aerosols. Chem. Res. Toxicol. 2015, 28, 1675–1677. [Google Scholar] [CrossRef]
- Son, Y.; Mishin, V.; Laskin, J.D.; Mainelis, G.; Wackowski, O.A.; Delnevo, C.; Schwander, S.; Khlystov, A.; Samburova, V.; Meng, Q. Hydroxyl Radicals in E-Cigarette Vapor and E-Vapor Oxidative Potentials under Different Vaping Patterns. Chem. Res. Toxicol. 2019, 32, 1087–1095. [Google Scholar] [CrossRef]
- Salman, R.; Talih, S.; El-Hage, R.; Haddad, C.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.A.; Shihadeh, A. Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product. Nicotine Tob. Res. 2019, 21, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, B.; Khachatryan, L.; Masko, S.; Lomnicki, S. Free Radicals in Tobacco Smoke. Mini-Rev. Org. Chem. 2011, 8, 427–433. [Google Scholar] [CrossRef]
- Gehling, W.; Dellinger, B. Environmentally Persistent Free Radicals and Their Lifetimes in PM2.5. Environ. Sci. Technol. 2013, 47, 8172–8178. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.; Gray, N.; Gaur, P.; Jeon, J.; Suarez, A.; Shannahan, J.; Pappas, R.S.; Watson-Wright, C. Toxicological Analysis of Aerosols Derived from Three Electronic Nicotine Delivery Systems Using Normal Human Bronchial Epithelial Cells. Toxicol. Vitr. 2020, 69, 104997. [Google Scholar] [CrossRef]
- Rubenstein, D.A.; Hom, S.; Ghebrehiwet, B.; Yin, W. Tobacco and E-Cigarette Products Initiate Kupffer Cell Inflammatory Responses. Mol. Immunol. 2015, 67, 652–660. [Google Scholar] [CrossRef]
- Sussan, T.E.; Gajghate, S.; Thimmulappa, R.K.; Ma, J.; Kim, J.-H.; Sudini, K.; Consolini, N.; Cormier, S.A.; Lomnicki, S.; Hasan, F.; et al. Exposure to Electronic Cigarettes Impairs Pulmonary Anti-Bacterial and Anti-Viral Defenses in a Mouse Model. PLoS ONE 2015, 10, e0116861. [Google Scholar] [CrossRef]
- El Golli, N.; Jrad-Lamine, A.; Neffati, H.; Rahali, D.; Dallagi, Y.; Dkhili, H.; Ba, N.; El May, M.V.; El Fazaa, S. Impact of E-Cigarette Refill Liquid with or without Nicotine on Liver Function in Adult Rats. Toxicol. Mech. Methods 2016, 26, 433–440. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef]
- Carnevale, R.; Sciarretta, S.; Violi, F.; Nocella, C.; Loffredo, L.; Perri, L.; Peruzzi, M.; Marullo, A.G.M.; De Falco, E.; Chimenti, I.; et al. Acute Impact of Tobacco vs. Electronic Cigarette Smoking on Oxidative Stress and Vascular Function. Chest 2016, 150, 606–612. [Google Scholar] [CrossRef]
- Chatterjee, S.; Tao, J.-Q.; Johncola, A.; Guo, W.; Caporale, A.; Langham, M.C.; Wehrli, F.W. Acute Exposure to E-Cigarettes Causes Inflammation and Pulmonary Endothelial Oxidative Stress in Nonsmoking, Healthy Young Subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 317, L155–L166. [Google Scholar] [CrossRef]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A Master Regulator of Cellular Responses in Inflammation, Injury Resolution, and Tumorigenesis. J. Leukoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Pignatelli, P.; Cangemi, R.; Andreozzi, P.; Panico, M.A.; Meloni, V.; Violi, F. Imbalance between Nitric Oxide Generation and Oxidative Stress in Patients with Peripheral Arterial Disease: Effect of an Antioxidant Treatment. J. Vasc. Surg. 2006, 44, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Muratani, S.; Ichikawa, S.; Erami, K.; Ito, S. Oxidative Stress-Mediated Epidermal Growth Factor Receptor Activation by Cigarette Smoke or Heated Tobacco Aerosol in Human Primary Bronchial Epithelial Cells from Multiple Donors. J. Appl. Toxicol. 2023, 43, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Begum, R.; Thota, S.; Batra, S. Interplay between Proteasome Function and Inflammatory Responses in E-Cig Vapor Condensate-Challenged Lung Epithelial Cells. Arch. Toxicol. 2023, 97, 2193–2208. [Google Scholar] [CrossRef]
- Kagemichi, N.; Umemura, M.; Ishikawa, S.; Iida, Y.; Takayasu, S.; Nagasako, A.; Nakakaji, R.; Akimoto, T.; Ohtake, M.; Horinouchi, T.; et al. Cytotoxic Effects of the Cigarette Smoke Extract of Heated Tobacco Products on Human Oral Squamous Cell Carcinoma: The Role of Reactive Oxygen Species and CaMKK2. J. Physiol. Sci. 2024, 74, 35. [Google Scholar] [CrossRef]
- Reliene, R.; Schiestl, R.H. Glutathione Depletion by Buthionine Sulfoximine Induces DNA Deletions in Mice. Carcinogenesis 2006, 27, 240–244. [Google Scholar] [CrossRef]
- Sawa, M.; Ushiyama, A.; Inaba, Y.; Hattori, K. Increased Oxidative Stress and Effects on Inflammatory Cytokine Secretion by Heated Tobacco Products Aerosol Exposure to Mice. Biochem. Biophys. Res. Commun. 2022, 610, 43–48. [Google Scholar] [CrossRef]
- Granata, S.; Canistro, D.; Vivarelli, F.; Morosini, C.; Rullo, L.; Mercatante, D.; Rodriguez-Estrada, M.T.; Baracca, A.; Sgarbi, G.; Solaini, G.; et al. Potential Harm of IQOS Smoke to Rat Liver. Int. J. Mol. Sci. 2023, 24, 12462. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: A Concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Cattaruzza, M.; Hecker, M. Protein Carbonylation and Decarboylation. Circ. Res. 2008, 102, 273–274. [Google Scholar] [CrossRef]
- Wong, C.-M.; Marcocci, L.; Das, D.; Wang, X.; Luo, H.; Zungu-Edmondson, M.; Suzuki, Y.J. Mechanism of Protein Decarbonylation. Free Radic. Biol. Med. 2013, 65. [Google Scholar] [CrossRef] [PubMed]
- Gaschler, M.M.; Stockwell, B.R. Lipid Peroxidation in Cell Death. Biochem. Biophys. Res. Commun. 2017, 482, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hunt, C.P.; Wadhwa, M.; Sanders, L.H. DNA Damage by Oxidative Stress: Measurement Strategies for Two Genomes. Curr. Opin. Toxicol. 2018, 7, 87–94. [Google Scholar] [CrossRef]
- Bajpayee, M.; Kumar, A.; Dhawan, A. The Comet Assay: Assessment of In Vitro and In Vivo DNA Damage. Methods Mol. Biol. 2019, 2031, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA Damage: Mechanisms, Mutation, and Disease. FASEB J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Tanaka, H.; Fujita, N.; Sugimoto, R.; Urawa, N.; Horiike, S.; Kobayashi, Y.; Iwasa, M.; Ma, N.; Kawanishi, S.; Watanabe, S.; et al. Hepatic Oxidative DNA Damage Is Associated with Increased Risk for Hepatocellular Carcinoma in Chronic Hepatitis C. Br. J. Cancer 2008, 98, 580–586. [Google Scholar] [CrossRef]
- Manikandan, P.; Nagini, S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Zhong, W.-J.; Yang, X.-S.; Zhou, H.; Xie, B.-R.; Liu, W.-W.; Li, Y. Role of Mitophagy in the Pathogenesis of Stroke: From Mechanism to Therapy. Oxid. Med. Cell Longev. 2022, 2022, 6232902. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; Georgieva, M.G.; Ognyanov, I.V.; Kordos, K.; Jóźwik, A.; Kühl, T.; Perry, G.; Petralia, M.C.; Mazzon, E.; et al. Reactive Oxygen Species and Their Impact in Neurodegenerative Diseases: Literature Landscape Analysis. Antioxid. Redox Signal. 2021, 34, 402–420. [Google Scholar] [CrossRef]
- Emma, R.; Caruso, M.; Campagna, D.; Pulvirenti, R.; Li Volti, G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants 2022, 11, 1829. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Chen, S.; Song, Z.; Liu, Z.; Zhang, M.; Ma, Z.; Chen, S.; Ge, Y.; Zheng, J. Inflammatory Stimulation Mediates Nucleus Pulposus Cell Necroptosis Through Mitochondrial Function Disfunction and Oxidative Stress Pathway. Front. Biosci. (Landmark Ed.) 2022, 27, 111. [Google Scholar] [CrossRef] [PubMed]
- Damay, V.A.; Setiawan; Lesmana, R.; Akbar, M.R.; Lukito, A.A.; Tarawan, V.M.; Martha, J.W.; Nugroho, J.; Sugiharto, S. Aerobic Exercise versus Electronic Cigarette in Vascular Aging Process: First Histological Insight. Int. J. Vasc. Med. 2023, 2023, 8874599. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-A.; Crotty Alexander, L.E.; Christiani, D.C. Vaping and Lung Inflammation and Injury. Annu. Rev. Physiol. 2022, 84, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Azimi, P.; Keshavarz, Z.; Lahaie Luna, M.; Cedeno Laurent, J.G.; Vallarino, J.; Christiani, D.C.; Allen, J.G. An Unrecognized Hazard in E-Cigarette Vapor: Preliminary Quantification of Methylglyoxal Formation from Propylene Glycol in E-Cigarettes. Int. J. Environ. Res. Public Health 2021, 18, 385. [Google Scholar] [CrossRef] [PubMed]
- Yu, V.; Rahimy, M.; Korrapati, A.; Xuan, Y.; Zou, A.E.; Krishnan, A.R.; Tsui, T.; Aguilera, J.A.; Advani, S.; Crotty Alexander, L.E.; et al. Electronic Cigarettes Induce DNA Strand Breaks and Cell Death Independently of Nicotine in Cell Lines. Oral Oncol. 2016, 52, 58–65. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Watson, R.M.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S.; et al. Environmental Health Hazards of E-Cigarettes and Their Components: Oxidants and Copper in e-Cigarette Aerosols. Environ. Pollut. 2015, 198, 100–107. [Google Scholar] [CrossRef]
- Fuentes, E.; Gibbins, J.M.; Holbrook, L.M.; Palomo, I. NADPH Oxidase 2 (NOX2): A Key Target of Oxidative Stress-Mediated Platelet Activation and Thrombosis. Trends Cardiovasc. Med. 2018, 28, 429–434. [Google Scholar] [CrossRef]
- Bartsch, H.; Nair, U.; Risch, A.; Rojas, M.; Wikman, H.; Alexandrov, K. Genetic Polymorphism of CYP Genes, Alone or in Combination, as a Risk Modifier of Tobacco-Related Cancers. Cancer Epidemiol. Biomark. Prev. 2000, 9, 3–28. [Google Scholar]
- Glynos, C.; Bibli, S.-I.; Katsaounou, P.; Pavlidou, A.; Magkou, C.; Karavana, V.; Topouzis, S.; Kalomenidis, I.; Zakynthinos, S.; Papapetropoulos, A. Comparison of the Effects of E-Cigarette Vapor with Cigarette Smoke on Lung Function and Inflammation in Mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L662–L672. [Google Scholar] [CrossRef]
- Garcia-Arcos, I.; Geraghty, P.; Baumlin, N.; Campos, M.; Dabo, A.J.; Jundi, B.; Cummins, N.; Eden, E.; Grosche, A.; Salathe, M.; et al. Chronic Electronic Cigarette Exposure in Mice Induces Features of COPD in a Nicotine-Dependent Manner. Thorax 2016, 71, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sundar, I.; Li, D.; Lucas, J.; Muthumalage, T.; McDonough, S.; Rahman, I. E-Cigarette-Induced Pulmonary Inflammation and Dysregulated Repair Are Mediated by NAChR A7 Receptor: Role of NAChR A7 in ACE2 COVID-19 Receptor Regulation. Respir. Res. 2020, 21, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, M.T.; Arechavala, R.J.; Herman, D.; Shi, J.; Hasen, I.; Ting, A.; Dai, W.; Carreno, J.; Chavez, J.; Zhao, L.; et al. E-Cigarette or Vaping Product Use-Associated Lung Injury Produced in an Animal Model From Electronic Cigarette Vapor Exposure without Tetrahydrocannabinol or Vitamin E. oil. J. Am. Heart Assoc. 2020, 9, e017368. [Google Scholar] [CrossRef] [PubMed]
- Crotty Alexander, L.E.; Drummond, C.A.; Hepokoski, M.; Mathew, D.; Moshensky, A.; Willeford, A.; Das, S.; Singh, P.; Yong, Z.; Lee, J.H.; et al. Chronic Inhalation of E-Cigarette Vapor Containing Nicotine Disrupts Airway Barrier Function and Induces Systemic Inflammation and Multiorgan Fibrosis in Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R834–R847. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Lugg, S.T.; Aldridge, K.; Lewis, K.E.; Bowden, A.; Mahida, R.Y.; Grudzinska, F.S.; Dosanjh, D.; Parekh, D.; Foronjy, R.; et al. Pro-Inflammatory Effects of e-Cigarette Vapour Condensate on Human Alveolar Macrophages. Thorax 2018, 73, 1161–1169. [Google Scholar] [CrossRef]
- Reidel, B.; Radicioni, G.; Clapp, P.W.; Ford, A.A.; Abdelwahab, S.; Rebuli, M.E.; Haridass, P.; Alexis, N.E.; Jaspers, I.; Kesimer, M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am. J. Respir. Crit. Care Med. 2018, 197, 492–501. [Google Scholar] [CrossRef]
- Serpa, G.L.; Renton, N.D.; Lee, N.; Crane, M.J.; Jamieson, A.M. Electronic Nicotine Delivery System Aerosol-Induced Cell Death and Dysfunction in Macrophages and Lung Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2020, 63, 306–316. [Google Scholar] [CrossRef]
- Evanoff, N.G.; Dengel, D.R.; Stockelman, K.A.; Fandl, H.; DeSouza, N.M.; Greiner, J.J.; Dufresne, S.R.; Kotlyar, M.; Garcia, V.P. Circulating Extracellular Microvesicles Associated with Electronic Cigarette Use Increase Endothelial Cell Inflammation and Reduce Nitric Oxide Production. Exp. Physiol. 2024, 109, 1593–1603. [Google Scholar] [CrossRef]
- Mobarrez, F.; Antoniewicz, L.; Hedman, L.; Bosson, J.A.; Lundbäck, M. Electronic Cigarettes Containing Nicotine Increase Endothelial and Platelet Derived Extracellular Vesicles in Healthy Volunteers. Atherosclerosis 2020, 301, 93–100. [Google Scholar] [CrossRef]
- Antoniewicz, L.; Bosson, J.A.; Kuhl, J.; Abdel-Halim, S.M.; Kiessling, A.; Mobarrez, F.; Lundbäck, M. Electronic Cigarettes Increase Endothelial Progenitor Cells in the Blood of Healthy Volunteers. Atherosclerosis 2016, 255, 179–185. [Google Scholar] [CrossRef]
- Gomez, N.E.; James, V.; Arkill, K.P.; Nizamudeen, Z.A.; Onion, D.; Fairclough, L.C. PBMC-Derived Extracellular Vesicles in a Smoking-Related Inflammatory Disease Model. Eur. J. Immunol. 2023, 53, e2250143. [Google Scholar] [CrossRef] [PubMed]
- Garza, A.P.; Morton, L.; Pállinger, É.; Buzás, E.I.; Schreiber, S.; Schott, B.H.; Dunay, I.R. Initial and Ongoing Tobacco Smoking Elicits Vascular Damage and Distinct Inflammatory Response Linked to Neurodegeneration. Brain Behav. Immun. Health 2023, 28, 100597. [Google Scholar] [CrossRef] [PubMed]
- Gomez, N.; James, V.; Onion, D.; Fairclough, L.C. Extracellular Vesicles and Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review. Respir. Res. 2022, 23, 82. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Lyes, M.; Sladewski, K.; Enany, S.; McEachern, E.; Mathew, D.P.; Das, S.; Moshensky, A.; Bapat, S.; Pride, D.T.; et al. Electronic Cigarette Inhalation Alters Innate Immunity and Airway Cytokines While Increasing the Virulence of Colonizing Bacteria. J. Mol. Med. 2016, 94, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Corriden, R.; Moshensky, A.; Bojanowski, C.M.; Meier, A.; Chien, J.; Nelson, R.K.; Crotty Alexander, L.E. E-Cigarette Use Increases Susceptibility to Bacterial Infection by Impairment of Human Neutrophil Chemotaxis, Phagocytosis, and NET Formation. Am. J. Physiol. Cell Physiol. 2020, 318, C205–C214. [Google Scholar] [CrossRef]
- Ghosh, A.; Coakley, R.C.; Mascenik, T.; Rowell, T.R.; Davis, E.S.; Rogers, K.; Webster, M.J.; Dang, H.; Herring, L.E.; Sassano, M.F.; et al. Chronic E-Cigarette Exposure Alters the Human Bronchial Epithelial Proteome. Am. J. Respir. Crit. Care Med. 2018, 198, 67–76. [Google Scholar] [CrossRef]
- Jackson, M.; Singh, K.P.; Lamb, T.; McIntosh, S.; Rahman, I. Flavor Preference and Systemic Immunoglobulin Responses in E-Cigarette Users and Waterpipe and Tobacco Smokers: A Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 640. [Google Scholar] [CrossRef]
- Gevaert, P.; Wong, K.; Millette, L.A.; Carr, T.F. The Role of IgE in Upper and Lower Airway Disease: More Than Just Allergy! Clin. Rev. Allergy Immunol. 2022, 62, 200–215. [Google Scholar] [CrossRef]
- Singh, K.P.; Lawyer, G.; Muthumalage, T.; Maremanda, K.P.; Khan, N.A.; McDonough, S.R.; Ye, D.; McIntosh, S.; Rahman, I. Systemic Biomarkers in Electronic Cigarette Users: Implications for Noninvasive Assessment of Vaping-Associated Pulmonary Injuries. ERJ Open Res. 2019, 5, 00182–02019. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, S.R.; Lee, Y.C. Impact of Oxidative Stress on Lung Diseases. Respirology 2009, 14, 27–38. [Google Scholar] [CrossRef]
- Gotts, J.E.; Jordt, S.-E.; McConnell, R.; Tarran, R. What Are the Respiratory Effects of E-Cigarettes? BMJ 2019, 366, l5275. [Google Scholar] [CrossRef]
- Palamidas, A.; Tsikrika, S.; Katsaounou, P.A.; Vakali, S.; Gennimata, S.-A.; Kaltsakas, G.; Gratziou, C.; Koulouris, N. Acute Effects of Short Term Use of Ecigarettes on Airways Physiology and Respiratory Symptoms in Smokers with and without Airway Obstructive Diseases and in Healthy Non Smokers. Tob. Prev. Cessat. 2017, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Barrington-Trimis, J.L.; Wang, K.; Urman, R.; Hong, H.; Unger, J.; Samet, J.; Leventhal, A.; Berhane, K. Electronic Cigarette Use and Respiratory Symptoms in Adolescents. Am. J. Respir. Crit. Care Med. 2017, 195, 1043–1049. [Google Scholar] [CrossRef]
- Meo, S.A.; Ansary, M.A.; Barayan, F.R.; Almusallam, A.S.; Almehaid, A.M.; Alarifi, N.S.; Alsohaibani, T.A.; Zia, I. Electronic Cigarettes: Impact on Lung Function and Fractional Exhaled Nitric Oxide Among Healthy Adults. Am. J. Mens Health 2019, 13, 1557988318806073. [Google Scholar] [CrossRef]
- Kerr, D.M.I.; Brooksbank, K.J.M.; Taylor, R.G.; Pinel, K.; Rios, F.J.; Touyz, R.M.; Delles, C. Acute Effects of Electronic and Tobacco Cigarettes on Vascular and Respiratory Function in Healthy Volunteers: A Cross-over Study. J. Hypertens. 2019, 37, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Yao, Z.; Boakye, E.; Blaha, M.J. The Impact of Chronic Electronic Cigarette Use on Endothelial Dysfunction Measured by Flow-Mediated Vasodilation: A Systematic Review and Meta-Analysis. Tob. Induc. Dis. 2024, 22. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Caporale, A.; Tao, J.Q.; Guo, W.; Johncola, A.; Strasser, A.A.; Leone, F.T.; Langham, M.C.; Wehrli, F.W. Acute E-Cig Inhalation Impacts Vascular Health: A Study in Smoking Naïve Subjects. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H144–H158. [Google Scholar] [CrossRef]
- Tang, M.-S.; Lee, H.-W.; Weng, M.-W.; Wang, H.-T.; Hu, Y.; Chen, L.-C.; Park, S.-H.; Chan, H.-W.; Xu, J.; Wu, X.-R.; et al. DNA Damage, DNA Repair and Carcinogenicity: Tobacco Smoke versus Electronic Cigarette Aerosol. Mutat. Res. Rev. Mutat. Res. 2022, 789, 108409. [Google Scholar] [CrossRef]
- Adriaens, K.; Gucht, D.V.; Baeyens, F. IQOSTM vs. e-Cigarette vs. Tobacco Cigarette: A Direct Comparison of Short-Term Effects after Overnight-Abstinence. Int. J. Environ. Res. Public Health 2018, 15, 2902. [Google Scholar] [CrossRef]
- Crotty Alexander, L.E.; Ware, L.B.; Calfee, C.S.; Callahan, S.J.; Eissenberg, T.; Farver, C.; Goniewicz, M.L.; Jaspers, I.; Kheradmand, F.; King, T.E.; et al. E-Cigarette or Vaping Product Use-Associated Lung Injury: Developing a Research Agenda. An NIH Workshop Report. Am. J. Respir. Crit. Care Med. 2020, 202, 795–802. [Google Scholar] [CrossRef]
- Smith, M.L.; Gotway, M.B.; Crotty Alexander, L.E.; Hariri, L.P. Vaping-Related Lung Injury. Virchows Arch. 2021, 478, 81–88. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, N.E.; Granata, S. The Role of ROS in Electronic Cigarette- and Heated Tobacco Product-Induced Damage. Oxygen 2024, 4, 363-376. https://doi.org/10.3390/oxygen4040022
Gomez NE, Granata S. The Role of ROS in Electronic Cigarette- and Heated Tobacco Product-Induced Damage. Oxygen. 2024; 4(4):363-376. https://doi.org/10.3390/oxygen4040022
Chicago/Turabian StyleGomez, Nancy E., and Silvia Granata. 2024. "The Role of ROS in Electronic Cigarette- and Heated Tobacco Product-Induced Damage" Oxygen 4, no. 4: 363-376. https://doi.org/10.3390/oxygen4040022
APA StyleGomez, N. E., & Granata, S. (2024). The Role of ROS in Electronic Cigarette- and Heated Tobacco Product-Induced Damage. Oxygen, 4(4), 363-376. https://doi.org/10.3390/oxygen4040022