Predicting the Ecological Risks of Phytoestrogens in Coastal Waters Using In Silico and In Vitro Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Data on the % Removal of the Phytoestrogens in Sewage as Well as Their Bioaccumulation Potential
2.2.1. Sewage Treatment Plants (STPs): % Removal of the Phytoestrogens
2.2.2. Bioaccumulation Potential of the Phytoestrogens
2.3. Chronic Ecotoxicity of Phytoestrogens in the Sea Urchin Echinometra Lucunter
2.3.1. Ecotoxicological Assessment: Obtaining Organisms and the Experiments
2.3.2. Chronic Toxicity Tests (Embryo–Larval Development Assay)
2.4. Ecological Risk Assessment of the Phytoestrogens
2.5. Prioritization Procedure Applied to Phytoestrogens
3. Results and Discussion
3.1. Results of the Chronic Toxicity Tests (Embryo–Larval Development Assay)
3.2. Results of the Ecological Risk Assessment of Phytoestrogens
3.3. Prioritization of the Phytoestrogens in Coastal Waters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreira, E.D.; Pinto, L.; Gomes, A.A.; Goicoechea, H.C.; Araújo, M.C. A fast chromatographic method for determination of daidzein and genistein in spiked water river samples using multivariate curve resolution. J. Brazil. Chem. Soc. 2015, 26, 1573–1582. [Google Scholar] [CrossRef]
- Toktay, E.; Selli, J.; Gurbuz, M.A.; Tastan, T.B.; Ugan, R.A.; Un, H.; Halici, Z. Effects of soy isoflavonoids (genistein and daidzein) on endometrial receptivity. Iran. J. Basic Med. Sci. 2020, 23, 1603. [Google Scholar]
- Sihlobo, W. Unpacking global grain and oilseed forecasts for 2022/23. Farmer’s Wkly. 2022, 22044, 13. [Google Scholar]
- Canivenc-Lavier, M.C.; Bennetau-Pelissero, C. Phytoestrogens and health effects. Nutrients 2023, 15, 317. [Google Scholar] [CrossRef]
- Degen, G.H.; Janning, P.; Wittsiepe, J.; Upmeier, A.; Bolt, H.M. Integration of mechanistic dta in the toxicological evaluation of endocrine modulators. Toxicol. Lett. 2002, 127, 225–237. [Google Scholar] [CrossRef]
- Clotfelter, E.D.; Rodriguez, A.C. Behavioral changes in fish exposed to phytoestrogens. Environ. Pollut. 2006, 144, 833–839. [Google Scholar] [CrossRef]
- Cooke, P.S.; Selvaraj, V.; Yellayi, S. Genistein, estrogen receptors, and the acquired immune response. J. Nutr. 2006, 136, 704–708. [Google Scholar] [CrossRef]
- Sarao, L.; Kaur, S.; Malik, T.; Singh, A. Genistein and daidzein. In Nutraceuticals and Health Care, 2022nd ed.; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 331–341. [Google Scholar] [CrossRef]
- Sosvorová, L.; Mikšátková, P.; Bičíková, M.; Kaňová, N.; Lapčík, O. The presence of monoiodinated derivates of daidzein and genistein in human urine and its effect on thyroid gland function. Food Chem. Toxicol. 2012, 50, 2774–2779. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Maia, A.; Santos, M.; Tiritan, M.E.; Ribeiro, C.M.R. Occurrence of natural contaminants of emerging concern in the Douro River Estuary, Portugal. Arch. Environ. Con. Tox. 2016, 70, 361–371. [Google Scholar] [CrossRef]
- Jarošová, B.; Javůrek, J.; Adamovský, O.; Hilscherová, K. Phytoestrogens and mycoestrogens in surface waters—Their sources, occurrence, and potential contribution to estrogenic activity. Environ. Int. 2015, 81, 26–44. [Google Scholar] [CrossRef]
- Sathyapalan, T.; Manuchehri, A.M.; Thatcher, N.J.; Rigby, A.S.; Chapman, T.; Kilpatrick, E.S.; Atkin, S.L. The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: A randomized, double-blind, crossover study. J. Clin. Endocrinol. Metab. 2011, 96, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Katzenellenbogen, J. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Franke, A.A.; Jin, F.; Shu, X.O.; Hebert, J.R.; Custer, L.J.; Zheng, W. Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidem. Biomar. 2002, 11, 815–821. [Google Scholar]
- Bustamante-Rangel, M.; Delgado-Zamarreno, M.M.; Carabias-Martínez, R.; Domínguez-Álvarez, J. Analysis of isoflavones in soy drink by capillary zone electrophoresis coupled with electrospray ionization mass spectrometry. Anal. Chim. Acta 2012, 709, 113–119. [Google Scholar] [CrossRef]
- Kiparissis, Y.; Hughes, R.; Metcalfe, C.; Ternes, T. Identification of the isoflavonoid genistein in bleached kraft mill effluent. Environ. Sci. Technol. 2001, 35, 2423–2427. [Google Scholar] [CrossRef]
- Spengler, P.; Körner, W.; Metzger, J.W. Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 1. Chemical analysis. Environ. Toxicol. Chem. 2001, 20, 2133–2141. [Google Scholar] [CrossRef]
- Pawlowski, S.; Ternes, T.; Bonerz, M.; Kluczka, T.; van der Burg, B.; Nau, H.; Braunbeck, T. Combined in situ and in vitro assessment of the estrogenic activity of sewage and surface water samples. Toxicol. Sci. 2003, 75, 57–65. [Google Scholar] [CrossRef]
- Kawanishi, M.; Takamura-Enya, T.; Ermawati, R.; Shimohara, C.; Sakamoto, M.; Matsukawa, K.; Yagi, T. Detection of genistein as an estrogenic contaminant of river water in Osaka. Environ. Sci. Technol. 2004, 38, 6424–6429. [Google Scholar] [CrossRef]
- Ribeiro, C.; Pardal, M.Â.; Martinho, F.; Margalho, R.; Tiritan, M.E.; Rocha, E.; Rocha, M.J. Distribution of endocrine disruptors in the Mondego River estuary, Portugal. Environ. Monit. Assess. 2009, 149, 183–193. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Zhao, Q.; Chen, J.; Zheng, L.; Zheng, M.; Wang, Z. Cloud point extraction coupled with HPLC-DAD for the determination of genistein and daidzein in river water. Anal. Methods 2013, 5, 3688–3692. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, I.A.; Foran, C.M. Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes). Comp. Biochem. Phys. C 2002, 132, 203–211. [Google Scholar] [CrossRef]
- Rearick, D.C.; Fleischhacker, N.T.; Kelly, M.M.; Arnold, W.A.; Novak, P.J.; Schoenfuss, H.L. Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows. Environ. Toxicol. Chem. 2014, 33, 553–559. [Google Scholar] [CrossRef]
- Bennetau-Pelissero, C.; Breton, B.; Bennetau, B.; Corraze, G.; Le Menn, F.; Davail-Cuisset, B.; Kaushik, S.J. Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocr. 2001, 121, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.H.; Song, W.T.; Wang, C.; Yan, Z.H. Assessment of in vivo estrogenic response and the identification of environmental estrogens in the Yangtze River (Nanjing section). Chemosphere 2010, 80, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Roveri, V.; Guimarães, L.L.; Toma, W.; Correia, A.T. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): A neglected, but sensitive issue. Environ. Sci. Pollut. Res. 2021, 28, 65595–65609. [Google Scholar] [CrossRef] [PubMed]
- Roveri, V.; Guimarães, L.L.; Toma, W.; Correia, A.T. Occurrence of pharmaceuticals and cocaine in the urban drainage channels located on the outskirts of the São Vicente Island (São Paulo, Brazil) and related ecological risk assessment. Environ. Sci. Pollut. Res. 2022, 29, 57931–57945. [Google Scholar] [CrossRef] [PubMed]
- Roveri, V.; Guimarães, L.L.; Toma, W.; Correia, A.T. Occurrence, ecological risk assessment and prioritization of pharmaceuticals and abuse drugs in estuarine waters along the São Paulo coast, Brazil. Environ. Sci. Pollut. Res. 2022, 29, 89712–89726. [Google Scholar] [CrossRef]
- Rocha, M.J.; Cruzeiro, C.; Rocha, E. Development and validation of a GC–MS method for the evaluation of 17 endocrine disruptor compounds, including phytoestrogens and sitosterol, in coastal waters–their spatial and seasonal levels in Porto costal region (Portugal). J. Water Health 2013, 11, 281–296. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Endocrine disruptors as pollutants in marine ecosystem: A case study in Egypt. Open Biotechnol. J. 2016, 10, 131–150. [Google Scholar] [CrossRef]
- Roveri, V.; Guimarães, L.L. In silico prediction of persistent, mobile, and toxic pharmaceuticals (PMT): A case study in São Paulo Metropolitan Region, Brazil. Comput. Toxicol. 2023, 25, 100254. [Google Scholar] [CrossRef]
- USEPA—United States Environmental Protection Agency. Estimation Program Interface Suite (EPI SuiteTM). Class Program. MS-Windows Version 4.11. 2017. Available online: https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411 (accessed on 21 March 2024).
- ECHA—European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.11: PBT/VPvBAssessment Version 3.0; ED-01-17-294-ENN; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar]
- Wielens Becker, R.; Alves Jachstet, L.; Dallegrave, A.; Ruiz-Padillo, A.; Zanella, R.; Sirtori, C. Multi-criteria decision-making techniques associated with (Q)SAR risk assessment for ranking surface water microcontaminants identified using LC-QTOF MS. Sci. Total Environ. 2021, 797, 149002. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Renuka, N.; Kumari, S.; Bux, F. Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. Chemosphere 2021, 280, 130674. [Google Scholar] [CrossRef] [PubMed]
- Cid, R.S.; Roveri, V.; Vidal, D.G.; Dinis, M.A.P.; Cortez, F.S.; Salgueiro, F.R.; Toma, W.; Cesar, A.; Guimarães, L.L. Toxicity of antiretrovirals on the Sea Urchin Echinometra lucunter and its predicted environmental concentration in seawater from Santos Bay (Brazilian Coastal Zone). Resources 2021, 10, 114. [Google Scholar] [CrossRef]
- ABNT Ecotoxicologia. Aquática—Toxicidade Crônica de Curta Duração—Método de Ensaio com Ouriço-do-mar (Echinodermata: Echinoidea) [Aquatic Ecotoxicology—Short Term Chronic Toxicity—Sea Urchin Test Method]-NBR 15350; ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- USEPA—United States Environmental Protection Agency. Sperm Cell Toxicity Tests Using the Sea Urchin (Arbacia punctulata) EPA 833-C-09-001. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/seaurchintesting.pdf (accessed on 1 March 2024).
- Reis, E.O.; Santos, L.V.S.; Lange, L.C. Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. Environ. Pollut. 2021, 288, 117803. [Google Scholar] [CrossRef] [PubMed]
- European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.10: Characterisation of Dose [Concentration]-Response for Environment; Dictus Publishing: Chisinau, Moldova, 2008. [Google Scholar]
- De Bruijn, J.; Hansen, B.; Johansson, S.; Luotamo, M.; Munn, S.; Musset, C.; Olsen, S.; OlssoN, H.; Paya-Perez, A.; Pedersen, F.; et al. Technical Guidance Document on risk Assessment; Part 1. Part 2; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Hernando, M.D.; Mezcua, M.; Fernandez-Alba, A.R.; Barcelo, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Commission of the European Communities. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for new Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances. 1996. Available online: https://op.europa.eu/en/publication-detail/-/publication/31268bfb-3534-4b9f-90aa-3506f6ba8231 (accessed on 5 March 2024).
- Roepke, T.A.; Snyder, M.J.; Cherr, G.N. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquat. Toxicol. 2005, 71, 155–173. [Google Scholar] [CrossRef]
- Kiparissis, Y.; Balch, G.C.; Metcalfe, T.L.; Metcalfe, C.D. Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes. Environ. Health Perspect. 2003, 111, 1158–1163. [Google Scholar] [CrossRef]
- Tzchori, I.; Degani, G.; Elisha, R.; Eliyahu, R.; Hurvitz, A.; Vaya, J.; Moav, B. The influence of phytoestrogens and oestradiol-17β on growth and sex determination in the European eel (Anguilla anguilla). Aquac. Res. 2004, 35, 1213–1219. [Google Scholar] [CrossRef]
- Beck, I.C.; Bruhn, R.; Gandrass, J.; Ruck, W. Liquid chromatography–tandem mass spectrometry analysis of estrogenic compounds in coastal surface water of the Baltic Sea. J. Chromatogr. A 2005, 1090, 98–106. [Google Scholar] [CrossRef]
- Rocha, M.J.; Cruzeiro, C.; Peixoto, C.; Rocha, E. Annual fluctuations of endocrine-disrupting compounds at the lower end of the Lima River, Portugal, and in adjacent coastal waters. Arch. Environ. Con. Tox. 2014, 67, 389–401. [Google Scholar] [CrossRef]
- Rocha, M.J.; Cruzeiro, C.; Reis, M.; Pardal, M.A.; Rocha, E. Pollution by endocrine disruptors in a southwest European temperate coastal lagoon (Ria de Aveiro, Portugal). Environ. Monit. Assess. 2016, 188, 101. [Google Scholar] [CrossRef] [PubMed]
- Deich, C.; Kanwischer, M.; Zhang, R.; Waniek, J.J. Natural and synthetic estrogenic compounds in the Pearl River Estuary and northern shelf of the South China Sea. Oceanologia 2023, 65, 30–43. [Google Scholar] [CrossRef]
- Cabral, L.C.; Roveri, V.; Cortez, F.S.; Alves da Cruz, K.A.V.; Ramos, N.T.; Pusceddu, F.H.; Guimarães, L.L. Ecotoxicological effects of personal care products on the sea urchin Echinometra lucunter. J. Environ. Eng. Sci. 2024, 40, 1–7. [Google Scholar] [CrossRef]
- ECB. Technical Guidance Document on Risk Assessment for Existing Substances, Part II; Office for Official Publications of the European Communities: Luxembourg, 2003; pp. 108–110. [Google Scholar]
QSAR | General Features | Sewage Treatment Plants (STPs) Total Removal | Bioaccumulation | Toxicity Effects | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PubChem Database | EPI Suite | EPI Suite (ECOSAR) | ||||||||
Compound | CAS | MF | SM | STP (%) | Total Biodegradation (%) | Total Sludge Adsorption (%) | Log KOW | ChV (mg/L) | ||
Algae | Crustacean | Fish | ||||||||
genistein | 446-72-0 | C15H10O5 | C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O | 4.54 | 0.11 | 4.42 | 2.84 | 0.445 | 2880 | 2200 |
daidzein | 486-66-8 | C15H10O4 | C1=CC(=CC=C1C2=COC3=C(C2=O)C=CC(=C3)O)O | 3.25 | 0.10 | 3.14 | 2.55 | 0.504 | 4512 | 3258 |
estradiol valerate | 979-32-8 | C23H32O3 | CCCCC(=O)OC1CCC2C1(CCC3C2CCC4=C3C=CC(=C4)O)C | 93.71 | 0.77 | 92.54 | 6.42 | 0.037 | 0.031 | 0.004 |
8-prenylnaringenin | 53846-50-7 | C20H20O5 | CC(=CCC1=C2C(=C(C=C1O)O)C(=O)CC(O2)C3=CC=C(C=C3)O)C | 76.73 | 0.67 | 76.06 | 4.97 | 0.147 | 0.235 | 0.109 |
coumestrol | 479-13-0 | C15H8O5 | C1=CC2=C(C=C1O)OC3=C2C(=O)OC4=C3C=CC(=C4)O | 2.00 | 0.09 | 1.90 | 1.57 | 0.985 | 107210 | 5243 |
enterolactone | 78473-71-9 | C18H18O4 | C1C(C(C(=O)O1)CC2=CC(=CC=C2)O)CC3=CC(=CC=C3)O | 3.95 | 0.11 | 3.84 | 2.73 | 0.526 | 3840 | 0.958 |
biochanin A | 491-80-5 | C16H12O5 | COC1=CC=C(C=C1)C2=COC3=CC(=CC(=C3C2=O)O)O | 11.14 | 0.17 | 10.97 | 3.41 | 0.328 | 3409 | 0.984 |
formononetin | 485-72-3 | C16H12O4 | COC1=CC=C(C=C1)C2=COC3=C(C2=O)C=CC(=C3)O | 6.74 | 0.13 | 6.61 | 3.11 | 2985 | 0.627 | 0.795 |
Rank (Criteria) | P | B | T |
---|---|---|---|
STP Removal (%) | Log Kow | ChV (mg/L) | |
1 | ≥80 | <1 | >100 |
2 | ≥60 | ≥1 | ≤100 |
3 | ≥40 | ≥2 | ≤10 |
4 | ≥20 | ≥3 | ≤1 |
5 | <20 | ≥4.5 | ≤0.1 |
Compound | Echinometra lucunter (Embryo–Larval Development Assay) | ||
---|---|---|---|
IC50 (mg/L) | NOEC (mg/L) | LOEC (mg/L) | |
Genistein | 3.37 (3.01–4.02) | <1.87 | 1.87 |
Daidzein | 2.60 (2.35–2.84) | <1.87 | 1.87 |
Estradiol valerate | 28.40 (24.10–30.41) | <6.25 | 6.25 |
Worldwide Peer-Reviewed Publications (MEC) | Toxicity Experiments Performed with the Phytoestrogens in the Present Study (PNEC) | MEC/PNEC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Phytoestrogen | MEC (ng/L) | Matrix | Reference | Organisms/Species | Endpoint | Concentrations (ng/L) | AF | PNEC (ng/L) | Reference | RQ |
Genistein | 0.61 | Seawater (Baltic Sea) | [47] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.00 |
Genistein | 826.0 | Mondego River estuary (Portugal) | [48] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.04 |
Genistein | 135.0 | Douro River estuary (Portugal) | [10] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.01 |
Genistein | 64.3 | Coastal Lagoon (Portugal) | [49] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.00 |
Genistein | 12.9 | Pearl River estuary (China) | [50] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.00 |
Daidzein | 0.43 | Seawater (Baltic Sea) | [47] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.00 |
Daidzein | 270.0 | Mondego River estuary (Portugal) | [48] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.01 |
Daidzein | 277.4 | Douro River estuary (Portugal) | [10] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.01 |
Daidzein | 147.0 | Coastal Lagoon (Portugal) | [49] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.01 |
Daidzein | 1.9 | Pearl River estuary (South) | [50] | Echinometra lucunter | NOEC | 1,870,000 | 100 | 18,700 | This study | 0.00 |
Compound | 1st Level of Concern | Persistence (STP Total Removal) | 2nd Level of Concern | Bioaccumulation (Log Kow) | 3rd Level of Concern | Toxicity (ChV; mg/L) | Sum of Three Levels of Concern | Final Ranking |
---|---|---|---|---|---|---|---|---|
Genistein | 5 | 4.54 | 3 | 2.84 | 4 | 0.445 | 12 | 2nd |
Daidzein | 5 | 3.25 | 3 | 2.55 | 4 | 0.504 | 12 | 2nd |
Estradiol valerate | 1 | 93.71 | 5 | 6.42 | 5 | 0.004 | 11 | 3rd |
8-prenylnaringenin | 1 | 76.73 | 5 | 4.97 | 4 | 0.109 | 10 | 4th |
Coumestrol | 5 | 2.00 | 2 | 1.57 | 4 | 0.985 | 11 | 3rd |
Enterolactone | 5 | 3.95 | 3 | 2.73 | 4 | 0.526 | 12 | 2nd |
Biochanin A | 5 | 11.14 | 4 | 3.41 | 4 | 0.328 | 13 | 1st |
Formononetin | 5 | 6.74 | 4 | 3.11 | 4 | 0.627 | 13 | 1st |
Concern level summed | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimarães, L.L.; Lourenço, B.F.; Pusceddu, F.H.; Cortez, F.S.; Kiyotani, R.B.; dos Santos, G.A.; Toma, W.; Roveri, V. Predicting the Ecological Risks of Phytoestrogens in Coastal Waters Using In Silico and In Vitro Approaches. Coasts 2024, 4, 651-666. https://doi.org/10.3390/coasts4040034
Guimarães LL, Lourenço BF, Pusceddu FH, Cortez FS, Kiyotani RB, dos Santos GA, Toma W, Roveri V. Predicting the Ecological Risks of Phytoestrogens in Coastal Waters Using In Silico and In Vitro Approaches. Coasts. 2024; 4(4):651-666. https://doi.org/10.3390/coasts4040034
Chicago/Turabian StyleGuimarães, Luciana Lopes, Bárbara Faria Lourenço, Fabio Hermes Pusceddu, Fernando Sanzi Cortez, Rafael Barreiros Kiyotani, Gilmar Aparecido dos Santos, Walber Toma, and Vinicius Roveri. 2024. "Predicting the Ecological Risks of Phytoestrogens in Coastal Waters Using In Silico and In Vitro Approaches" Coasts 4, no. 4: 651-666. https://doi.org/10.3390/coasts4040034
APA StyleGuimarães, L. L., Lourenço, B. F., Pusceddu, F. H., Cortez, F. S., Kiyotani, R. B., dos Santos, G. A., Toma, W., & Roveri, V. (2024). Predicting the Ecological Risks of Phytoestrogens in Coastal Waters Using In Silico and In Vitro Approaches. Coasts, 4(4), 651-666. https://doi.org/10.3390/coasts4040034