Wind Vorticity and Upwelling along the Coast of South Africa
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Study Area and Mean Maps
3.2. Temporal Characteristics and Seasonality
3.3. Intraseasonal Pulsing
3.4. Local Scenario of Cyclonic Cases
3.5. Diurnal Cycling of Wind Vorticity
3.6. Chlorophyll and Interannual Climate
4. Concluding Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Burk, S.D.; Thompson, W.T. The summertime low-level jet and marine boundary layer structure along the California coast. Mon. Weather Rev. 1996, 124, 668–686. [Google Scholar] [CrossRef]
- Rogerson, A.M. Trans-critical flows in the coastal marine atmospheric boundary layer. J. Atmos. Sci. 1999, 56, 2761–2779. [Google Scholar] [CrossRef]
- Edwards, K.A.; Rogerson, A.M.; Winant, C.D.; Rogers, D.P. Adjustment of the marine atmospheric boundary layer to a coastal cape. J. Atmos. Sci. 2001, 58, 1511–1528. [Google Scholar] [CrossRef]
- Perlin, N.; Skyllingstad, E.D.; Samelson, R.M. Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean–atmosphere model. Mon. Weather Rev. 2011, 139, 809–829. [Google Scholar] [CrossRef]
- Enriquez, A.G.; Friehe, C.A. Effects of wind stress and wind stress curl variability on coastal upwelling. J. Phys. Oceanogr. 1995, 25, 1651–1671. [Google Scholar] [CrossRef]
- Bielli, S.; Barbour, P.L.; Samelson, R.M.; Skyllingstad, E.; Wilczak, J. Numerical study of the diurnal cycle along the central Oregon coast during summertime northerly flow. Mon. Weather Rev. 2002, 130, 992–1008. [Google Scholar] [CrossRef]
- Castelao, R.; Barth, J.A. The role of wind stress curl in jet separation at a cape. J. Phys. Oceanogr. 2007, 37, 2652–2671. [Google Scholar] [CrossRef]
- Skyllingstad, E.D.; Samelson, R.M.; Mahrt, L.; Barbour, P. A numerical modeling study of warm offshore flow over cool water. Mon. Weather Rev. 2005, 133, 345–361. [Google Scholar] [CrossRef]
- Song, Q.; Chelton, D.B.; Esbensen, S.K.; Thum, N.; O’Neill, L.W. Coupling between sea surface temperature and low-level winds in mesoscale numerical models. J. Clim. 2009, 22, 146–164. [Google Scholar] [CrossRef]
- Jury, M.R.; Goschen, W. Inter-relationships between physical ocean-atmosphere variables over the shelf south of South Africa from reanalysis products. Cont. Shelf Res. 2020, 202, 104135. [Google Scholar] [CrossRef]
- Bakun, A.; Nelson, C.S. The seasonal cycle of wind stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr. 1991, 21, 1815–1834. [Google Scholar] [CrossRef]
- Rueda-Roa, D.T.; Muller-Karger, F.E. The southern Caribbean upwelling system: Sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep Sea Res. I 2013, 78, 102–114. [Google Scholar] [CrossRef]
- Bordbar, M.H.; Mohrholz, V.; Schmidt, M. The relation of wind-driven coastal and offshore upwelling in the Benguela System. J. Phys. Oceanogr. 2021, 51, 3117–3133. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology, 3rd ed.; Academic Press: New York, NY, USA, 1992; p. 511. [Google Scholar]
- Schumann, E.H.; Brink, K.H. Coastal trapped waves off the coast of South Africa: Generation, propagation and current structures. J. Phys. Oceanogr. 1990, 20, 1206–1218. [Google Scholar] [CrossRef]
- Lutjeharms, J.R.E.; Cooper, J.; Roberts, M.J. Upwelling at the inshore edge of the Agulhas Current. Cont. Shelf Res. 2000, 20, 737–761. [Google Scholar] [CrossRef]
- Lutjeharms, J.R.E. The Agulhas Current; Springer: Berlin/Heidelberg, Germany, 2006; p. 329. [Google Scholar]
- Goschen, W.S.; Bornman, T.G.; Deyzel, S.H.P.; Schumann, E.H. Coastal upwelling on the far eastern Agulhas Bank associated with large meanders in the Agulhas Current. Cont. Shelf Res. 2015, 101, 34–46. [Google Scholar] [CrossRef]
- DeRuijter, W.P.M.; VanLeeuwen, J.P.; Lutjeharms, J.R.E. Generation and evolution of Natal pulses: Solitary meanders in the Agulhas Current. J. Phys. Oceanogr. 1999, 29, 3043–3055. [Google Scholar] [CrossRef]
- Tsugawa, M.; Hasumi, H. Generation and growth mechanism of the Natal Pulse. J. Phys. Oceanogr. 2010, 40, 1597–1612. [Google Scholar] [CrossRef]
- Jury, M.R. Modulation of currents near Durban. Reg. Stud. Mar. Sci. 2018, 18, 208–218. [Google Scholar] [CrossRef]
- Behringer, D.W. The Global Ocean Data Assimilation System (GODAS) at NCEP. In Proceedings of the 11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Antonio, TX, USA, 14–18 January 2007. [Google Scholar]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA-3 a new ocean climate reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP climate forecast system version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- O’Rielly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar]
- Rossby, C.G. Planetary flow patterns in the atmosphere. Q. J. R. Meteorol. Soc. 1940, 66, 68–87. [Google Scholar] [CrossRef]
- Ertel, H. A new form of hydrodynamic vorticity. Meteorol. Z. 1942, 59, 277–281. [Google Scholar]
- Thorpe, A.J.; Volkert, H. Potential vorticity: A short history of its definitions and uses. Meteorol. Z. 1997, 6, 275–280. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Q. Computing hydrostatic potential vorticity in terrain-following coordinates. Mon. Weather Rev. 2011, 139, 2955–2961. [Google Scholar] [CrossRef]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S.; et al. An improved and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Rueda-Roa, D.T.; Ezer, T.; Muller-Karger, F.E. Description and mechanisms of the mid-year upwelling in the southern Caribbean Sea from remote sensing and local data. J. Mar. Sci. Eng. 2018, 6, 36. [Google Scholar] [CrossRef]
- Jacox, M.G.; Edwards, C.A. Upwelling source depth in the presence of nearshore wind stress curl. J. Geophys. Res. 2012, 117, C05008. [Google Scholar] [CrossRef]
- Söderberg, S.; Tjernström, M. Supercritical channel flow in the coastal atmospheric boundary layer: Idealized numerical simulations. J. Geophys. Res. 2001, 106, 17811–17830. [Google Scholar] [CrossRef]
- Pielke, R.A.; Segal, M. Mesoscale circulations forced by differential terrain heating. In Mesoscale Meteorology and Forecasting; Ray, P., Ed.; AMS: Providence, RI, USA, 1986; pp. 516–548. [Google Scholar]
- Koracin, D.R.; Dorman, C.E.; Dever, E.P. Coastal perturbations of marine layer wind stress and wind stress curl along California and Baja California in June 1999. J. Phys. Ocean. 2004, 34, 1152–1173. [Google Scholar] [CrossRef]
- Bravo, L.; Ramos, M.; Astudillo, O.; DeWitte, B.; Goubanova, K. Seasonal variability of the Ekman transport and pumping in the upwelling system off central-northern Chile (30S) based on a high-resolution atmospheric regional model (WRF). Ocean Sci. 2016, 12, 1049–1065. [Google Scholar] [CrossRef]
- Capet, X.J.; Marchesiello, P.; McWilliams, J.C. Upwelling response to coastal wind profiles. Geophys. Res. Lett. 2004, 31, L13311. [Google Scholar] [CrossRef]
- Dever, E.P.; Dorman, C.E.; Largier, J.L. Surface boundary-layer variability off Northern California, during upwelling. Deep. Sea Res. II Top. Stud. Oceanogr. 2006, 53, 2887–2905. [Google Scholar] [CrossRef]
- Song, H.; Miller, A.J.; Cornuelle, B.D.; DiLorenzo, E. Changes in upwelling and its water sources in the California Current system driven by different wind forcing. Dyn. Atmos. Oceans 2011, 52, 170–191. [Google Scholar] [CrossRef]
- Brandt, P.; Bordbar, M.H.; Coelho, P.; Koungue, R.A.; Körner, M.; Lamont, T.; Lübbecke, J.F.; Mohrholz, V.; Prigent, A.; Roch, M.; et al. Physical drivers of southwest African coastal upwelling and its response to climate variability and change. In Sustainability of Southern African Ecosystems under Global Change, Ecol. Studies, 248; von Maltitz, G.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Shan, S.; Sheng, J. Numerical Study of Topographic Effects on Wind-Driven Coastal Upwelling on the Scotian Shelf. J. Mar. Sci. Eng. 2022, 10, 497. [Google Scholar] [CrossRef]
- Jury, M.R. Marine climate change over the eastern Agulhas Bank of South Africa. Ocean. Sci. 2020, 16, 1529–1544. [Google Scholar] [CrossRef]
Acronym | Name Version | Horiz. Res. |
---|---|---|
CFS2 | Coupled forecast system reanalysis v2, meteorology | 25 km |
EC | European Centre satellite dynamic topography | 25 km |
ERA5 | European Centre reanalysis v5, meteorology | 25 km |
GODAS | Global Ocean Data Assimilation system (NOAA) | 50 km |
MERRA2 | Modern Era Reanalysis for Research and Applications v2 | 50 km |
MODIS | Moderate Imaging Sensor, SST and chlorophyll | 10 km |
SODA3 | Simple Ocean Data Assimilation v3 | 25 km |
West | -Vort | Ʃ Stressy | ∂η/∂x | SSTa |
---|---|---|---|---|
Ʃ stressy | 0.68 | |||
∂η/∂x | −0.04 | 0.10 | ||
SSTa | −0.22 | −0.23 | 0.07 | |
CHL | 0.29 | 0.30 | 0.01 | −0.17 |
South | -vort | Ʃ stressx | ∂η/∂y | SSTa |
Ʃ stressx | −0.43 | |||
∂η/∂y | −0.11 | 0.25 | ||
SSTa | −0.16 | −0.16 | −0.08 | |
CHL | −0.04 | 0.17 | 0.01 | −0.20 |
East | -vort | Ʃ stressn | ∂η/∂n | SSTa |
Ʃ stressn | 0.18 | |||
∂η/∂n | −0.12 | 0.05 | ||
SSTa | −0.10 | −0.33 | −0.28 | |
CHL | 0.18 | 0.01 | −0.02 | −0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jury, M.R. Wind Vorticity and Upwelling along the Coast of South Africa. Coasts 2024, 4, 619-637. https://doi.org/10.3390/coasts4030032
Jury MR. Wind Vorticity and Upwelling along the Coast of South Africa. Coasts. 2024; 4(3):619-637. https://doi.org/10.3390/coasts4030032
Chicago/Turabian StyleJury, Mark R. 2024. "Wind Vorticity and Upwelling along the Coast of South Africa" Coasts 4, no. 3: 619-637. https://doi.org/10.3390/coasts4030032
APA StyleJury, M. R. (2024). Wind Vorticity and Upwelling along the Coast of South Africa. Coasts, 4(3), 619-637. https://doi.org/10.3390/coasts4030032