Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change
Abstract
:1. Introduction
2. Projected Impacts of Climate Change and SLR: The Need for Timely Action in Islands
2.1. Increased Coastal Erosion
2.2. Loss of Land and Displacement
2.3. Saltwater Intrusion
2.4. Increased Frequency and Intensity of Storms
2.5. Coral Reef Degradation
2.6. Threats to Biodiversity and Ecosystems
2.7. Economic Impacts
3. An Overview of Obstacles and Roadblocks to Climate Change and SLR Adaptation in SIDS
3.1. The Impact of Colonial Legacies
3.1.1. Economic Dependency
3.1.2. Institutional Weaknesses
3.1.3. Limited Autonomy
3.1.4. Land Tenure and Resource Management
3.1.5. Disrupted Traditional Knowledge
3.1.6. Unequal Burdens
3.2. The Impact of Neocolonial Policies
3.2.1. Intrinsic Vulnerability of SIDS
3.2.2. Economic Exploitation
3.2.3. Debt Burden
3.2.4. Limited Access to Technology
3.2.5. Unequal Power Dynamics
3.2.6. Loss of Cultural Identity and Values
3.2.7. Limited Policy Autonomy
3.3. The Impact of Environmental Injustice
3.3.1. Unequal Vulnerability
3.3.2. Limited Access to Resources
3.3.3. Displacement and Forced Relocation
3.3.4. Health Disparities
3.3.5. Limited Participation and Representation
3.4. The Impact of Debt Burden
3.4.1. Limited Financial Resources
3.4.2. Reduced Fiscal Space
3.4.3. Lack of Access to International Financing
3.4.4. Constraints on Policy Flexibility
3.4.5. Weakened Governance and Institutions
3.4.6. Increased Vulnerability
3.5. The Compounded Impact of Health Disparities
3.5.1. Differential Health Impacts
3.5.2. Unequal Access to Healthcare
3.5.3. Reduced Adaptation Capacity
3.5.4. Inequitable Distribution of Resources
3.5.5. Intersecting Vulnerabilities
4. An Overview of Coastal Restoration Strategies for SIDS in the Context of Climate Change and SLR Mitigation
4.1. SLR and Climate Change Mitigation Strategies
4.1.1. Adaptation and Land-Use Planning
4.1.2. Coastal Protection and Engineering
4.1.3. Ecosystem-Based Approaches
4.1.4. Sustainable Water Management
4.1.5. Renewable Energy Adoption
4.1.6. Community Engagement and Education
4.1.7. International Cooperation and Support
4.2. Coastal Green Infrastructure Restoration
4.2.1. Mangrove Restoration and Conservation
4.2.2. Coral Reef Protection and Restoration
4.2.3. Beach Nourishment and Sand Dune Restoration
4.2.4. Living Shorelines
4.2.5. Green Roofs, Green Walls, and Permeable Surfaces
4.2.6. Stormwater Management
4.2.7. Reforestation and Native Vegetation Restoration
4.2.8. Integrated Coastal Zone Management
4.2.9. Education and Community Involvement
4.3. Integration of Green–Hybrid–Gray Coastal Infrastructure
4.3.1. Sea Walls and Revetments
4.3.2. Breakwaters and Groins
4.3.3. Gabions and Geotextiles
4.3.4. Dredging and Sediment Management
4.3.5. Coastal Reclamation and Land Reengineering
4.4. Beach Renourishment as a Tool to Stabilize Shoreline Dynamics
4.4.1. Sediment Selection
4.4.2. Timing and Seasonality
4.4.3. Monitoring and Assessment
4.4.4. Sediment Placement Techniques
4.4.5. Designing Setbacks and Buffers
4.4.6. Stakeholder Engagement and Communication
4.4.7. Ecosystem Restoration and Conservation
4.5. An emergent Toolbox: Integrated Coastal Ecosystem Engineering Strategies
4.5.1. Mangrove Forests
4.5.2. Coral Reefs
4.5.3. Seagrass Meadows
4.5.4. Oyster Reefs and Mussel Banks
4.5.5. Artificial Reef Structures
4.5.6. Wetlands and Salt Marshes
4.5.7. Dunes and Beach Vegetation
4.5.8. Urban Shorelines
5. Challenging Financing Strategies: The Integration of the Private Sector
5.1. Corporate Social Responsibility (CSR) Initiatives
5.2. Public–Private Partnerships
5.3. Sustainable Tourism Practices
5.4. Eco-Tourism and Nature-Based Tourism
5.5. Diversification of the Economy
5.6. Education and Awareness
5.7. Capacity Building and Training
5.8. Advocacy and Policy Support
6. An Overview of Best Management Practices for Coastal Restoration in SIDS
6.1. Coral Reef Restoration Best Management Practices
6.1.1. Site Selection and Assessment
6.1.2. Collaboration and Partnerships
6.1.3. Monitoring and Evaluation
6.1.4. Genetic Diversity and Local Adaptation
6.1.5. Coral Propagation and Nursery Techniques
6.1.6. Out-Planting Strategies
6.1.7. Coral Disease and Predation Management
6.1.8. Community Involvement and Education
6.1.9. Long-Term Management and Protection
6.1.10. Adaptive Management and Knowledge Sharing
6.2. Seagrass Restoration Best Management Practices
6.2.1. Site Selection and Assessment
6.2.2. Seed Collection and Propagation
6.2.3. Seeding and Out-Planting Techniques
6.2.4. Monitoring and Evaluation
6.2.5. Water Quality Management
6.2.6. Habitat Protection and Management
6.2.7. Community Involvement and Education
6.2.8. Sediment Stabilization and Erosion Control
6.2.9. Long-Term Management and Adaptive Strategies
6.2.10. Collaboration and Knowledge Sharing
6.3. Mangrove Restoration Best Management Practices
6.3.1. Site Selection and Assessment
6.3.2. Native Species Selection
6.3.3. Propagation and Planting Techniques
6.3.4. Hydrological Restoration
6.3.5. Sediment Stabilization
6.3.6. Monitoring and Evaluation
6.3.7. Community Involvement and Education
6.3.8. Habitat Protection and Management
6.3.9. Climate Change Resilience
6.3.10. Collaboration and Knowledge Sharing
6.4. Urban Coastal Habitats Restoration Best Management Practices
6.4.1. Integrated Coastal Management
6.4.2. Stakeholder Engagement and Collaboration
6.4.3. Ecological Assessment and Planning
6.4.4. Green Infrastructure and Nature-Based Solutions
6.4.5. Erosion and Sediment Management
6.4.6. Water Quality Improvement
6.4.7. Habitat Restoration and Creation
6.4.8. Public Access and Recreation
6.4.9. Education and Awareness
6.4.10. Long-Term Monitoring and Adaptive Management
6.5. Wave Energy and Runup Attenuation Best Management Practices
6.5.1. Natural and Nature-Based Features
6.5.2. Beach Nourishment and Sediment Management
6.5.3. Submerged Breakwaters and Groins
6.5.4. Seawalls and Revetments
6.5.5. Offshore Artificial Reefs and Submerged Structures
6.5.6. Coastal Setbacks and Land-Use Planning
6.5.7. Living Shorelines
6.5.8. Coastal Vegetation and Dune Restoration
6.5.9. Coastal Monitoring and Adaptive Management
6.5.10. Public Education and Awareness
7. Beyond Shoreline Protection: Ecological Benefits from Coastal Ecological Restoration
7.1. Coral Reefs
7.1.1. Habitat Improvement and Restoration of Critical Ecological Processes
7.1.2. Biodiversity Enhancement
7.1.3. Ecological Connectivity
7.1.4. Ecosystem Functioning
7.1.5. Enhanced Resilience to Disturbance
7.1.6. Habitat Availability and Complexity
7.1.7. Fish Recruitment and Nursery Habitats
7.1.8. Associated Species Diversity and Abundance
7.1.9. Trophic Interactions and Food Webs
7.1.10. Fish Assemblage Composition and Biomass
7.1.11. Improved Population Dynamics
7.1.12. Response to Disturbances
7.1.13. Potential for Unintended Impacts
7.2. Seagrass Meadows
7.2.1. Habitat Provision
7.2.2. Improved Water Quality
7.2.3. Carbon Sequestration
7.2.4. Enhanced Biodiversity and Species Richness
7.2.5. Food Resources
7.2.6. Trophic Interactions
7.2.7. Shelter and Protection
7.2.8. Ecological Connectivity and Migration
7.2.9. Nutrient Cycling and Productivity
7.2.10. Erosion Control and Shoreline Stability
7.2.11. Enhanced Ecosystem Services and Social–Ecological Resilience
7.3. Mangroves
7.3.1. Habitat Provision
7.3.2. Food Resources
7.3.3. Nursery Function
7.3.4. Spawning and Breeding Grounds
7.3.5. Trophic Interactions
7.3.6. Ecological Connectivity and Migration
7.3.7. Enhanced Response to Disturbances
7.3.8. Coastal Protection
7.3.9. Water Quality Improvement
7.3.10. Carbon Sequestration
7.3.11. Nutrient Cycling
7.3.12. Biodiversity Conservation
7.3.13. Terrestrial–Marine Connectivity
7.3.14. Enhance Ecosystem Services
8. Socio-Economic Impacts of Coastal Green Infrastructure Restoration in SIDS
8.1. Tourism and Recreation
8.2. Property Value and Real Estate
8.3. Fisheries and Aquaculture
8.4. Coastal Protection and Resilience
8.5. Carbon Sequestration and Climate Change Mitigation
8.6. Eco-Tourism and Nature-Based Enterprises
8.7. Job Creation and Workforce Development
9. The Need for a Successful Coastal Restoration Public Policy
9.1. Assess the Current State of the Coast
9.2. Set Clear Goals and Objectives
9.3. Engage Stakeholders
9.4. Develop a Comprehensive Policy Framework
9.5. Secure Funding and Resources
9.6. Implement Restoration Projects
9.7. Monitor and Evaluate Progress
9.8. Foster Local, Regional, and International Collaboration and Knowledge Sharing
9.9. Adapt and Update the Policy
9.10. Communicate and Engage the Public
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kelman, I.; West, J.J. Climate change and small island developing states: A critical review. Ecol. Environ. Anthropol. 2009, 5, 1–16. [Google Scholar]
- Robinson, S.-A. Climate change adaptation trends in small island developing states. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 669–691. [Google Scholar] [CrossRef]
- Kelman, I. Dealing with climate change on small island developing states. Pract. Anthropol. 2011, 33, 28–32. [Google Scholar] [CrossRef]
- Betzold, C. Adapting to climate change in small island developing states. Clim. Chang. 2015, 133, 481–489. [Google Scholar] [CrossRef]
- Klöck, C.; Nunn, P.D. Adaptation to climate change in small island developing states: A systematic literature review of academic research. J. Environ. Dev. 2019, 28, 196–218. [Google Scholar] [CrossRef]
- Robinson, S.-A. Climate change adaptation in SIDS: A systematic review of the literature pre and post the IPCC Fifth Assessment Report. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e653. [Google Scholar] [CrossRef]
- Thomas, A.; Baptiste, A.; Martyr-Koller, R.; Pringle, P.; Rhiney, K. Climate change and small island developing states. Annu. Rev. Environ. Resour. 2020, 45, 1–27. [Google Scholar] [CrossRef]
- Rudner, N. Disaster care and socioeconomic vulnerability in Puerto Rico. J. Health Care Poor Underserved 2019, 30, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Smith, T. Vulnerability of renters and low-income households to storm damage: Evidence from Hurricane Maria in Puerto Rico. Am. J. Public Health 2020, 110, 196–202. [Google Scholar] [CrossRef]
- Talbot, J.; Poleacovschi, C.; Hamideh, S. Socioeconomic vulnerabilities and housing reconstruction in Puerto Rico after hurricanes Irma and Maria. Nat. Hazards 2022, 110, 2113–2140. [Google Scholar] [CrossRef]
- Ballesteros, L.M.S.; Poleacovschi, C.; Weems, C.F.; Zambrana, I.G.; Talbot, J. Evaluating the interaction effects of housing vulnerability and socioeconomic vulnerability on self-perceptions of psychological resilience in Puerto Rico. Int. J. Disaster Risk Reduct. 2023, 84, 103476. [Google Scholar] [CrossRef]
- García-López, G.A. The multiple layers of environmental injustice in contexts of (un)natural disasters: The case of Puerto Rico post-Hurricane Maria. Environ. Justice 2018, 11, 101–108. [Google Scholar] [CrossRef]
- Morris, Z.A.; Hayward, R.A.; Otero, Y. The political determinants of disaster risk: Assessing the unfolding aftermath of Hurricane Maria for people with disabilities in Puerto Rico. Environ. Justice 2018, 11, 89–94. [Google Scholar] [CrossRef]
- Bonilla, Y. The coloniality of disaster: Race, empire, and the temporal logics of emergency in Puerto Rico, USA. Political Geogr. 2020, 78, 102181. [Google Scholar] [CrossRef]
- Roque, A.D.; Pijawka, D.; Wutich, A. The role of social capital in resiliency: Disaster recovery in Puerto Rico. Risk Hazards Crisis Public Policy 2020, 11, 204–235. [Google Scholar] [CrossRef]
- Guerra Velázquez, R. Hurricane María and public health in Puerto Rico: Lessons learned to increase resiliency and prepare for future disasters. Ann. Glob. Health 2022, 88, 82. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.K.; Willig, M.R.; Hernández-Delgado, E.A. Resistance, resilience, and vulnerability of social-ecological systems to hurricanes in Puerto Rico. Ecosphere 2020, 11, e03159. [Google Scholar] [CrossRef]
- Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 2010, 327, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef]
- Knutson, T.R.; Chung, M.; Vecchi, G.; Sun, J. Science Brief Review: Climate change is probably increasing the intensity of tropical cyclones. In Critical Issues in Climate Change Science; Le Quéré, C., Liss, P., Forster, P., Eds.; UEA ScienceBrief: Norwich, UK, 2021; pp. 1–8. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Cazenave, A.; Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2013, 2, 15–34. [Google Scholar] [CrossRef]
- Albert, S.; Leon, J.X.; Grinham, A.R.; Church, J.A.; Gibbes, B.R.; Woodroffe, C.D. Interactions between sea-level rise and wave exposure on reef island dynamics in the Solomon Islands. Environ. Res. Lett. 2016, 11, 054011. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Albert, S.; Saunders, M.I.; Roelfsema, C.M.; Leon, J.X.; Johnstone, E.; Mackenzie, J.R.; Hoegh-Guldberg, O.; Grinham, A.R.; Phinn, S.R.; Duke, N.C.; et al. Winners and losers as mangrove, coral and seagrass ecosystems respond to sea-level rise in Solomon Islands. Environ. Res. Lett. 2017, 12, 094009. [Google Scholar] [CrossRef]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J. Case study on sea-level rise impacts. In Proceedings of the OECD Workshop on the Benefits of Climate Policy: Improving Information for Policy Makers, Paris, France, 12–13 December 2002; Volume 9, pp. 69–86. [Google Scholar]
- Barnard, P.L.; Dugan, J.E.; Page, H.M.; Wood, N.J.; Hart, J.A.F.; Cayan, D.R.; Erikson, L.H.; Hubbard, D.M.; Myers, M.R.; Melack, J.M.; et al. Multiple climate change-driven tipping points for coastal systems. Sci. Rep. 2021, 11, 15560. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Laplante, B.; Meisner, C.; Wheeler, D.; Yan, J. The impact of sea level rise on developing countries: A comparative analysis. Clim. Chang. 2009, 93, 379–388. [Google Scholar] [CrossRef]
- Nicholls, R.J. Planning for the impacts of sea level rise. Oceanography 2011, 24, 144–157. [Google Scholar] [CrossRef]
- Mcleod, E.; Poulter, B.; Hinkel, J.; Reyes, E.; Salm, R. Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean Coast. Manag. 2010, 53, 507–517. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmao, D.; Hinkel, J.; Tol, R.S. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 161–181. [Google Scholar] [CrossRef]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Chapter 5: Sea-level rise impacts and responses: A global perspective. In Coastal Hazards; Finkl, C., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 117–149. [Google Scholar]
- Calil, J.; Reguero, B.G.; Zamora, A.R.; Losada, I.J.; Méndez, F.J. Comparative coastal risk index (CCRI): A multidisciplinary risk index for Latin America and the Caribbean. PLoS ONE 2017, 12, e0187011. [Google Scholar] [CrossRef] [PubMed]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Anthoff, D.; Nicholls, R.J.; Tol, R.S.J. The economic impact of substantial sea-level rise. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 321–335. [Google Scholar] [CrossRef]
- Neumann, J.E.; Emanuel, K.; Ravela, S.; Ludwig, L.; Kirshen, P.; Bosma, K.; Martinich, J. Joint effects of storm surge and sea-level rise on US Coasts: New economic estimates of impacts, adaptation, and benefits of mitigation policy. Clim. Chang. 2015, 129, 337–349. [Google Scholar] [CrossRef]
- Balaguru, K.; Judi, D.R.; Leung, L.R. Future hurricane storm surge risk for the US gulf and Florida coasts based on projections of thermodynamic potential intensity. Clim. Chang. 2016, 138, 99–110. [Google Scholar] [CrossRef]
- Pedrozo-Acuña, A.; Damania, R.; Laverde-Barajas, M.A.; Mira-Salama, D. Assessing the consequences of sea-level rise in the coastal zone of Quintana Roo, México: The costs of inaction. J. Coast. Conserv. 2015, 19, 227–240. [Google Scholar] [CrossRef]
- Pycroft, J.; Abrell, J.; Ciscar, J.-C. The global impacts of extreme sea-level rise: A comprehensive economic assessment. Environ. Resour. Econ. 2016, 64, 225–253. [Google Scholar] [CrossRef]
- Parrado, R.; Bosello, F.; Delpiazzo, E.; Hinkel, J.; Lincke, D.; Brown, S. Fiscal effects and the potential implications on economic growth of sea-level rise impacts and coastal zone protection. Clim. Chang. 2020, 160, 283–302. [Google Scholar] [CrossRef]
- Brown, S.; Jenkins, K.; Goodwin, P.; Lincke, D.; Vafeidis, A.T.; Tol, R.S.J.; Jenkins, R.; Warren, R.; Nicholls, R.J.; Jevrejeva, S.; et al. Global costs of protecting against sea-level rise at 1.5 to 4.0 °C. Clim. Chang. 2021, 167, 4. [Google Scholar] [CrossRef]
- Joshi, S.R.; Vielle, M.; Babonneau, F.; Edwards, N.R.; Holden, P.B. Physical and economic consequences of sea-level rise: A coupled GIS and CGE analysis under uncertainties. Environ. Resour. Econ. 2016, 65, 813–839. [Google Scholar] [CrossRef]
- Tamura, M.; Kumano, N.; Yotsukuri, M.; Yokoki, H. Global assessment of the effectiveness of adaptation in coastal areas based on RCP/SSP scenarios. Clim. Chang. 2019, 152, 363–377. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A. The emerging threats of climate change on tropical coastal ecosystem services, public health, local economies and livelihood sustainability of small islands: Cumulative impacts and synergies. Mar. Pollut. Bull. 2015, 101, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Wang, X.L.; Zwiers, F.W.; Swail, V.R. North Atlantic Ocean wave climate change scenarios for the twenty-first century. J. Clim. 2004, 17, 2368–2383. [Google Scholar] [CrossRef]
- Mori, N.; Yasuda, T.; Mase, H.; Tom, T.; Oku, Y. Projection of extreme wave climate change under global warming. Hydrol. Res. Lett. 2010, 4, 15–19. [Google Scholar] [CrossRef]
- Semedo, A.; Weisse, R.; Behrens, A.; Sterl, A.; Bengtsson, L.; Günther, H. Projection of global wave climate change toward the end of the twenty-first century. J. Clim. 2012, 26, 8269–8288. [Google Scholar] [CrossRef]
- Fan, Y.; Held, I.M.; Lin, S.-J.; Wang, X.L. Ocean warming effect on surface gravity wave climate change for the end of the twenty-first century. J. Clim. 2013, 26, 6046–6066. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N.; Shimura, T.; Webb, A.; Padilla-Hernández, R.; Villers, S. Natural variability and warming signals in global ocean wave climates. Geophys. Res. Lett. 2021, 48, e2021GL093622. [Google Scholar] [CrossRef]
- Elsner, J.B. Evidence in support of the climate change–Atlantic hurricane hypothesis. Geophys. Res. Lett. 2006, 33, L16705. [Google Scholar] [CrossRef]
- Holland, G.; Bruyère, C.L. Recent intense hurricane response to global climate change. Clim. Dyn. 2014, 42, 617–627. [Google Scholar] [CrossRef]
- Tsuboki, K.; Yoshioka, M.K.; Shinoda, T.; Kato, M.; Kanada, S.; Kitoh, A. Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett. 2015, 42, 646–652. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N.; Cracknell, A.P. Sharp rise in hurricane and cyclone count during the last century. Theor. Appl. Clim. 2015, 119, 629–638. [Google Scholar] [CrossRef]
- Sugi, M.; Murakami, H.; Yoshida, K. Projection of future changes in the frequency of intense tropical cyclones. Clim. Dyn. 2017, 49, 619–632. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Ho, C.-H.; Chan, J.C.L.; Ha, K.-J.; Kim, H.-S.; Kim, J.; Kim, J.-H. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections. Sci. Rep. 2017, 7, 41354. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Alarcón, A.; Fernández-Alvarez, J.C.; Coll-Hidalgo, P. Global increase of the intensity of tropical cyclones under global warming based on their maximum potential intensity and CMIP6 Models. Environ. Process. 2023, 10, 36. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Climate Change and the Future Impacts of Storm-Surge Disasters in Developing Countries; Center for Global Development Working Paper No. 182; SSRN: Rochester, NY, USA, 2009. [Google Scholar]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Díaz-Simal, P.; Méndez, F.J.; Beck, M.W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 2015, 10, e0133409. [Google Scholar] [CrossRef]
- Alvarez-Filip, L.; Dulvy, N.K.; Gill, J.A.; Côté, I.M.; Watkinson, A.R. Flattening of Caribbean coral reefs: Region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 2009, 276, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Filip, L.; Gill, J.A.; Dulvy, N.K.; Perry, A.L.; Watkinson, A.R.; Côté, I.M. Drivers of region-wide declines in architectural complexity on Caribbean reefs. Coral Reefs 2011, 30, 1051–1060. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Mumby, P.J.; Mason, M.S. Near-reef and nearshore tropical cyclone wave climate in the Great Barrier Reef with and without reef structure. Coast. Eng. 2020, 157, 103652. [Google Scholar] [CrossRef]
- Fonseca, M.S.; Cahalan, J.A. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar. Coast. Shelf Sci. 1992, 35, 565–576. [Google Scholar] [CrossRef]
- Keyzer, L.M.; Herman, P.M.; Smits, B.P.; Pietrzak, J.D.; James, R.K.; Candy, A.S.; Riva, R.E.; Bouma, T.J.; van der Boog, C.G.; Katsman, C.A.; et al. The potential of coastal ecosystems to mitigate the impact of sea-level rise in shallow tropical bays. Estuar. Coast. Shelf Sci. 2020, 246, 107050. [Google Scholar] [CrossRef]
- Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, 5, 3794. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.L. The Bruun theory of sea-level rise as a cause of shore erosion. J. Geol. 1967, 75, 76–92. [Google Scholar] [CrossRef]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. Eos Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Stive, M.J.F.; Ranasinghe, R.; Cowell, P.J. Sea level rise and coastal erosion. In Handbook of Coastal and Ocean Engineering; Kim, Y.C., Ed.; World Scientific: Singapore, 2010; pp. 1023–1037. [Google Scholar]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Romine, B.M.; Fletcher, C.H.; Barbee, M.M.; Anderson, T.R.; Frazer, L.N. Are beach erosion rates and sea-level rise related in Hawaii? Glob. Planet. Chang. 2013, 108, 149–157. [Google Scholar] [CrossRef]
- Feagin, R.A.; Sherman, D.J.; Grant, W.E. Coastal erosion, global sea-level rise, and the loss of sand dune plant habitats. Front. Ecol. Environ. 2005, 3, 359–364. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, R.K.; McKenzie, L.J.; Nordlund, L.M.; Cullen-Unsworth, L.C. A changing climate for seagrass conservation? Curr. Biol. 2018, 28, R1229–R1232. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Hoozemans, F.M.J.; Marchand, M. Increasing flood risk and wetland losses due to global sea-level rise: Regional and global analyses. Glob. Environ. Chang. 1999, 9, S69–S87. [Google Scholar] [CrossRef]
- Martyr-Koller, R.; Thomas, A.; Schleussner, C.-F.; Nauels, A.; Lissner, T. Loss and damage implications of sea-level rise on Small Island Developing States. Curr. Opin. Environ. Sustain. 2021, 50, 245–259. [Google Scholar] [CrossRef]
- Mycoo, M. Sustainable tourism, climate change and sea level rise adaptation policies in Barbados. Nat. Resour. Forum 2014, 38, 47–57. [Google Scholar] [CrossRef]
- Pathak, A.; van Beynen, P.E.; Akiwumi, F.A.; Lindeman, K.C. Impacts of climate change on the tourism sector of a Small Island Developing State: A case study for the Bahamas. Environ. Dev. 2021, 37, 100556. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, L.; Ehler, C.N.; Klein, R.J.T.; Kulshrestha, S.M.; McLean, R.F.; Mimura, N.; Nicholls, R.J.; Nurse, L.A.; Pérez Nieto, H.; Stakhiv, E.Z.; et al. Coastal zones and small islands. In Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Watson, R.T., Zinyowera, M.C., Moss, R.H., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 289–324. [Google Scholar]
- Leatherman, S.P.; Beller-Simms, N. Sea-level rise and small island states: An overview. J. Coast. Res. 1997, 24, 1–6. [Google Scholar]
- Jamero, M.L.; Onuki, M.; Esteban, M.; Billones-Sensano, X.K.; Tan, N.; Nellas, A.; Takagi, H.; Thao, N.D.; Valenzuela, V.P. Small-island communities in the Philippines prefer local measures to relocation in response to sea-level rise. Nat. Clim. Chang. 2017, 7, 581–586. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Hall, N.D.; Stuntz, B.B.; Abrams, R.H. Climate change and freshwater resources. Nat. Resour. Environ. 2008, 22, 30–35. [Google Scholar]
- Loáiciga, H.A.; Pingel, T.J.; García, E.S. Sea water intrusion by sea-level rise: Scenarios for the 21st century. Groundwater 2012, 50, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.K.; Saha, S.; Sadle, J.; Jiang, J.; Ross, M.S.; Price, R.M.; Sternberg, L.S.L.O.; Wendelberger, K.S. Sea level rise and South Florida coastal forests. Clim. Chang. 2011, 107, 81–108. [Google Scholar] [CrossRef]
- Marfai, M.A. Impact of sea level rise to coastal ecology: A case study on the northern part of Java Island, Indonesia. Quaest. Geogr. 2014, 33, 107–114. [Google Scholar] [CrossRef]
- Marrero, A.; Mattei, J. Reclaiming traditional, plant-based, climate-resilient food systems in small islands. Lancet Planet. Health 2022, 6, e171–e179. [Google Scholar] [CrossRef] [PubMed]
- Connell, J.; Lowitt, K.; Saint Ville, A.; Hickey, G.M. Food security and sovereignty in small island developing states: Contemporary crises and challenges. In Food Security in Small Island States; Springer: Singapore, 2020; pp. 1–23. [Google Scholar]
- Emanuel, K. The Hurricane—Climate connection. Bull. Am. Meteorol. Soc. 2008, 89, ES10–ES20. [Google Scholar] [CrossRef]
- Xi, D.; Lin, N.; Gori, A. Increasing sequential tropical cyclone hazards along the US East and Gulf coasts. Nat. Clim. Chang. 2023, 13, 258–265. [Google Scholar] [CrossRef]
- Cambers, G. Beach changes in the eastern Caribbean islands: Hurricane impacts and implications for climate change. J. Coast. Res. 1997, 24, 29–47. [Google Scholar]
- Méheux, K.; Dominey-Howes, D.; Lloyd, K. Natural hazard impacts in small island developing states: A review of current knowledge and future research needs. Nat. Hazards 2007, 40, 429–446. [Google Scholar] [CrossRef]
- Shultz, J.M.; Kossin, J.P.; Shepherd, J.M.; Ransdell, J.M.; Walshe, R.; Kelman, I.; Galea, S. Risks, health consequences, and response challenges for small-island-based populations: Observations from the 2017 Atlantic hurricane season. Disaster Med. Public Health Prep. 2019, 13, 5–17. [Google Scholar] [CrossRef]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R.; et al. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Anderson, K.D.; Connolly, S.R.; Heron, S.F.; Kerry, J.T.; Lough, J.M.; Baird, A.H.; Baum, J.K.; Berumen, M.L.; Bridge, T.C.; et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 2018, 359, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G.; et al. Global warming transforms coral reef assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Sully, S.; Burkepile, D.E.; Donovan, M.K.; Hodgson, G.; van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 2019, 10, 1264. [Google Scholar] [CrossRef]
- Dietzel, A.; Bode, M.; Connolly, S.R.; Hughes, T.P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proc. R. Soc. B 2020, 287, 20201432. [Google Scholar] [CrossRef]
- Dixon, A.M.; Forster, P.M.; Heron, S.F.; Stoner, A.M.K.; Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 2022, 1, e0000004. [Google Scholar] [CrossRef]
- van Woesik, R.; Kratochwill, C. A global coral-bleaching database, 1980–2020. Sci. Data 2022, 9, 20. [Google Scholar] [CrossRef]
- Kleypas, J.A.; Feely, R.A.; Fabry, V.J.; Langdon, C.; Sabine, C.L.; Robbins, L.L. Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research. In Report of a Workshop Held Apr 18, 2005; NOAA: Washington, DC, USA, 2006. [Google Scholar]
- Anthony, K.R.N.; Maynard, J.A.; Diaz-Pulido, G.; Mumby, P.J.; Marshall, P.A.; Cao, L.; Hoegh-Guldberg, O. Ocean acidification and warming will lower coral reef resilience. Glob. Chang. Biol. 2011, 17, 1798–1808. [Google Scholar] [CrossRef]
- Mcleod, E.; Anthony, K.R.; Andersson, A.; Beeden, R.; Golbuu, Y.; Kleypas, J.; Kroeker, K.; Manzello, D.; Salm, R.V.; Schuttenberg, H.; et al. Preparing to manage coral reefs for ocean acidification: Lessons from coral bleaching. Front. Ecol. Environ. 2013, 11, 20–27. [Google Scholar] [CrossRef]
- Brown, B.E.; Dunne, R.P.; Somerfield, P.J.; Edwards, A.J.; Simons, W.J.; Phongsuwan, N.; Putchim, L.; Anderson, L.; Naeije, M.C. Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~40 year period. Sci. Rep. 2019, 9, 8826. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A.; González-Ramos, C.M.; Alejandro-Camis, P.J. Large-scale coral recruitment patterns on Mona Island, Puerto Rico: Evidence of a transitional community trajectory after massive coral bleaching and mortality. Rev. Biol. Trop. 2014, 62, 283–298. [Google Scholar]
- González-Figueroa, M.C.; Hernández-Delgado, E.A. Variación espacial en los patrones de recuperación natural de los arrecifes de coral someros urbanos en Puerto Rico. Perspect. Asun. Ambient. 2021, 9, 90–111. [Google Scholar]
- Hernández-Delgado, E.A.; Ortiz-Flores, M.F. The long and winding road of coral reef recovery in the Anthropocene: A case study from Puerto Rico. Diversity 2022, 14, 804. [Google Scholar] [CrossRef]
- Woodley, J.D.; Chornesky, E.A.; Clifford, P.A.; Jackson, J.B.C.; Kaufman, L.S.; Knowlton, N.; Lang, J.C.; Pearson, M.P.; Porter, J.W.; Rooney, M.C.; et al. Hurricane Allen’s impact on Jamaican coral reefs. Science 1981, 214, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Bythell, J.C.; Gladfelter, E.H.; Bythell, M. Chronic and catastrophic natural mortality of three common Caribbean reef corals. Coral Reefs 1993, 12, 143–152. [Google Scholar] [CrossRef]
- Gardner, T.A.; Côté, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Hurricanes and Caribbean coral reefs: Impacts, recovery patterns, and role in long-term decline. Ecology 2005, 86, 174–184. [Google Scholar] [CrossRef]
- Gitay, H.; Suárez, A.; Watson, R.T.; Dokken, D.J.; Anisimov, O.; Chapin, F.S.; Cruz, R.V.; Finlayson, M.; Hohenstein, W.; Insarov, G.; et al. Climate change and biodiversity. In Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2002; pp. 1–74. [Google Scholar]
- Przeslawski, R.; Ahyong, S.; Byrne, M.; Wörheide, G.; Hutchings, P. Beyond corals and fish: The effects of climate change on noncoral benthic invertebrates of tropical reefs. Glob. Chang. Biol. 2008, 14, 2773–2795. [Google Scholar] [CrossRef]
- Şekercioğlu, Ç.H.; Primack, R.B.; Wormworth, J. The effects of climate change on tropical birds. Biol. Conserv. 2012, 148, 1–8. [Google Scholar] [CrossRef]
- Nurse, L.A.; McLean, R.F.; Agard, J.; Briguglio, L.P.; Duvat-Magnan, V.; Barros, V.R.; Field, C.B.; Dokken, D.J.; Mastrandrea, M.D.; Mach, K.J.; et al. (Eds.) Part B: Regional Aspects. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1613–1654. [Google Scholar]
- Bove, G.; Becker, A.; Sweeney, B.; Vousdoukas, M.; Kulp, S. A method for regional estimation of climate change exposure of coastal infrastructure: Case of USVI and the influence of digital elevation models on assessments. Sci. Total Environ. 2020, 710, 136162. [Google Scholar] [CrossRef]
- Vrontisi, Z.; Charalampidis, I.; Lehr, U.; Meyer, M.; Paroussos, L.; Lutz, C.; Lam-González, Y.E.; Arabadzhyan, A.; González, M.M.; León, C.J. Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands. Clim. Chang. 2022, 170, 27. [Google Scholar] [CrossRef]
- Hay, J.E. Small island developing states: Coastal systems, global change and sustainability. Sustain. Sci. 2013, 8, 309–326. [Google Scholar] [CrossRef]
- Pelling, M.; Uitto, J.I. Small island developing states: Natural disaster vulnerability and global change. Glob. Environ. Chang. Part B Environ. Hazards 2001, 3, 49–62. [Google Scholar] [CrossRef]
- Wilby, R.L. A review of climate change impacts on the built environment. Built Environ. 2007, 33, 31–45. [Google Scholar] [CrossRef]
- Pernetta, J.C. Impacts of climate change and sea-level rise on small island states: National and international responses. Glob. Environ. Chang. 1992, 2, 19–31. [Google Scholar] [CrossRef]
- Holding, S.; Allen, D.M. From days to decades: Numerical modelling of freshwater lens response to climate change stressors on small low-lying islands. Hydrol. Earth Syst. Sci. 2015, 19, 933–949. [Google Scholar] [CrossRef]
- Doorga, J.R.S. Climate change and the fate of small islands: The case of Mauritius. Environ. Sci. Policy 2022, 136, 282–290. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A. Climate change impacts on Caribbean coastal ecosystems: Emergent ecological and environmental geography challenges. In Routledge Handbook of Latin America and the Environment; Engel-Di Mauro, S., Bustos, B., Ojeda, D., Milanez, F., García, G., Eds.; Routledge: Abingdon, UK, 2023; pp. 36–50. [Google Scholar]
- Douglass, K.; Cooper, J. Archaeology, environmental justice, and climate change on islands of the Caribbean and southwestern Indian Ocean. Proc. Nat. Acad. Sci. USA 2020, 117, 8254–8262. [Google Scholar] [CrossRef] [PubMed]
- Look, C.; Friedman, E.; Godbout, G. The resilience of land tenure regimes during Hurricane Irma: How colonial legacies impact disaster response and recovery in Antigua and Barbuda. J. Extrem. Events 2019, 6, 1940004. [Google Scholar] [CrossRef]
- France, L. Local participation in tourism in the West Indian Islands. In Embracing and Managing Change in Tourism; Laws, E., Faulkner, B., Moscardo, G., Eds.; Routledge: Abingdon, UK, 2003; pp. 257–268. [Google Scholar]
- Bordner, A.S.; Ferguson, C.E.; Ortolano, L. Colonial dynamics limit climate adaptation in Oceania: Perspectives from the Marshall Islands. Glob. Environ. Chang. 2020, 61, 102054. [Google Scholar] [CrossRef]
- Barnett, J.; Evans, L.S.; Gross, C.; Kiem, A.S.; Kingsford, R.T.; Palutikof, J.P.; Pickering, C.M.; Smithers, S.G. From barriers to limits to climate change adaptation: Path dependency and the speed of change. Ecol. Soc. 2015, 20, 5. [Google Scholar] [CrossRef]
- Petzold, J.; Magnan, A.K. Climate change: Thinking small islands beyond Small Island Developing States (SIDS). Clim. Chang. 2019, 152, 145–165. [Google Scholar] [CrossRef]
- Dixit, A.; McGray, H.; Gonzales, J.; Desmond, M. Ready or Not: Assessing National Institutional Capacity for Climate Change Adaptation; WRI Working Paper; World Resources Institute (WRI): Washington, DC, USA, 2012; pp. 1–24. [Google Scholar]
- Read, R. The implications of increasing globalization and regionalism for the economic growth of small island states. World Dev. 2004, 32, 365–378. [Google Scholar] [CrossRef]
- Zellentin, A. Climate justice, small island developing states & cultural loss. Clim. Chang. 2015, 133, 491–498. [Google Scholar]
- Atchoaréna, D.; Da Graça, P.D.; Marquez, J.M. Strategies for post-primary education in small island developing states (SIDS): Lessons from Cape Verde. Comp. Educ. 2008, 44, 167–185. [Google Scholar] [CrossRef]
- Baptiste, A.K.; Devonish, H. The manifestation of climate injustices: The post-Hurricane Irma conflicts surrounding Barbuda’s communal land tenure. J. Extrem. Events 2019, 6, 1940002. [Google Scholar] [CrossRef]
- Adger, W.N.; Kelly, P.M. Social vulnerability to climate change and the architecture of entitlements. Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 253–266. [Google Scholar] [CrossRef]
- Hayward, B.; Salili, D.H.; Tupuana’, L.L.; Tualamali’i’, J. It’s not “too late”: Learning from Pacific Small Island Developing States in a warming world. Wiley Interdiscip. Rev. Clim. Chang. 2020, 11, e612. [Google Scholar] [CrossRef]
- Mercer, J.; Dominey-Howes, D.; Kelman, I.; Lloyd, K. The potential for combining indigenous and western knowledge in reducing vulnerability to environmental hazards in small island developing states. Environ. Hazards 2007, 7, 245–256. [Google Scholar] [CrossRef]
- Beckford, C. Climate change resiliency in Caribbean SIDS: Building greater synergies between science and local and traditional knowledge. J. Environ. Stud. Sci. 2018, 8, 42–50. [Google Scholar] [CrossRef]
- Rice, J.; Long, J.; Levenda, A. Against climate apartheid: Confronting the persistent legacies of expendability for climate justice. Environ. Plan. E Nat. Space 2022, 5, 625–645. [Google Scholar] [CrossRef]
- Islam, N.; Winkel, J. Climate Change and Social Inequality; DESA Working Paper No. 152; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017; pp. 1–30. [Google Scholar]
- Birkmann, J.; Jamshed, A.; McMillan, J.M.; Feldmeyer, D.; Totin, E.; Solecki, W.; Ibrahim, Z.Z.; Roberts, D.; Kerr, R.B.; Poertner, H.-O.; et al. Understanding human vulnerability to climate change: A global perspective on index validation for adaptation planning. Sci. Total Environ. 2022, 803, 150065. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.; Waters, E. Rethinking the vulnerability of small island states: Climate change and development in the Pacific Islands. In The Palgrave Handbook of International Development; Grugel, J., Hammett, D., Eds.; Palgrave Macmillan: London, UK, 2016; pp. 731–748. [Google Scholar]
- Gounder, A.; Chand, P.; Kumar, A. Government debt and foreign aid: Do they matter for economic growth in small island economies? Empirical evidence from the Pacific Islands. J. Knowl. Econ. 2023. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- O’Brien, K.L. Do values subjectively define the limits to climate change adaptation. In Adapting to Climate Change: Thresholds, Values, Governance; Cambridge University Press: Cambridge, UK, 2009; pp. 164–180. [Google Scholar]
- Ahmed, S.; Eklund, E. Climate change impacts in coastal Bangladesh: Migration, gender and environmental injustice. Asian Aff. 2021, 52, 155–174. [Google Scholar] [CrossRef]
- Hardy, R.D.; Milligan, R.A.; Heynen, N. Racial coastal formation: The environmental injustice of colorblind adaptation planning for sea-level rise. Geoforum 2017, 87, 62–72. [Google Scholar] [CrossRef]
- Jayaraman, T.K.; Choong, C.K. Public debts and economic growth in the South Pacific Islands: A case study of Fiji. J. Econ. Dev. 2006, 31, 107–121. [Google Scholar]
- Wilkinson, E.; Scobie, M.; Lindsay, C.; Corbett, J.; Carter, G.; Bouhia, R.; Bishop, M. Sustaining Development in Small Island Developing States: A Reform Agenda. Policy Brief; ODI: London, UK, 2021; Available online: https://odi.org/en/publications/sustaining-development-in-small-island-developing-states-a-reform-agenda/ (accessed on 24 February 2024).
- Tsark, J.U.; Braun, K.L. Reducing cancer health disparities in the US-associated Pacific. J. Public Health Manag. Pract. 2007, 13, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Palafox, N.A.; Hixon, A.L. Health consequences of disparity: The US Affiliated Pacific Islands. Australas. Psychiatry 2011, 19 (Suppl. 1), S84–S89. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, B.; Childs, I.; Hastings, P. Climate change adaptation through land use planning and disaster management: Local government perspectives from Queensland. In Proceedings of the 17th Pacific Rim Real Estate Society Conference, Gold Coast, QLD, Australia, 16–19 January 2011; pp. 16–19. [Google Scholar]
- Berke, P.R.; Stevens, M.R. Land use planning for climate adaptation: Theory and practice. J. Plan. Educ. Res. 2016, 36, 283–289. [Google Scholar] [CrossRef]
- Sanó, M.; Jiménez, J.A.; Medina, R.; Stanica, A.; Sánchez-Arcilla, A.; Trumbic, I. The role of coastal setbacks in the context of coastal erosion and climate change. Ocean. Coast. Manag. 2011, 54, 943–950. [Google Scholar] [CrossRef]
- Zhu, X.; Linham, M.M.; Nicholls, R.J. Technologies for Climate Change Adaptation. Coastal Erosion and Flooding; UNEP Risø Centre: Roskilde, Denmark, 2010; pp. 1–148. [Google Scholar]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean. Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Schmitz, O.J.; Lawler, J.J.; Beier, P.; Groves, C.; Knight, G.; Boyce, D.A.; Bulluck, J.; Johnston, K.M.; Klein, M.L.; Muller, K.; et al. Conserving biodiversity: Practical guidance about climate change adaptation approaches in support of land-use planning. Nat. Areas J. 2015, 35, 190–203. [Google Scholar] [CrossRef]
- Mycoo, M.A. Achieving SDG 6: Water resources sustainability in Caribbean small island developing states through improved water governance. Nat. Resour. Forum 2018, 42, 54–68. [Google Scholar] [CrossRef]
- Emmanuel, K.; Clayton, A. A strategic framework for sustainable water resource management in small island nations: The case of Barbados. Water Policy 2017, 19, 601–619. [Google Scholar] [CrossRef]
- Belmar, Y.N.; McNamara, K.E.; Morrison, T.H. Water security in small island developing states: The limited utility of evolving governance paradigms. Wiley Interdiscip. Rev. Water 2016, 3, 181–193. [Google Scholar] [CrossRef]
- Michalena, E.; Hills, J.M. Paths of renewable energy development in small island developing states of the South Pacific. Renew. Sustain. Energy Rev. 2018, 82, 343–352. [Google Scholar] [CrossRef]
- Dornan, M. Renewable energy development in small island developing states of the Pacific. Resources 2015, 4, 490–506. [Google Scholar] [CrossRef]
- Dornan, M.; Shah, K.U. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States. Energy Policy 2016, 98, 759–767. [Google Scholar] [CrossRef]
- Danovaro, R.; Aronson, J.; Cimino, R.; Gambi, C.; Snelgrove, P.V.R.; Van Dover, C. Marine ecosystem restoration in a changing ocean. Restor. Ecol. 2021, 29, e13432. [Google Scholar] [CrossRef]
- Onuma, A.; Tsuge, T. Comparing green infrastructure as ecosystem-based disaster risk reduction with gray infrastructure in terms of costs and benefits under uncertainty: A theoretical approach. Int. J. Disaster Risk Reduct. 2018, 32, 22–28. [Google Scholar] [CrossRef]
- Hallett, L.M.; Diver, S.; Eitzel, M.V.; Olson, J.J.; Ramage, B.S.; Sardinas, H.; Statman-Weil, Z.; Suding, K.N. Do we practice what we preach? Goal setting for ecological restoration. Restor. Ecol. 2013, 21, 312–319. [Google Scholar] [CrossRef]
- Ellison, A.M.; Felson, A.J.; Friess, D.A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 2020, 7, 327. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A.; Mercado-Molina, A.E.; Suleimán-Ramos, S.E. Multi-disciplinary lessons learned from low-tech coral farming and reef rehabilitation practices. I. Best management practices. In Corals in a Changing World; Duque-Beltrán, C., Tello-Camacho, E., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 213–243. ISBN 978-953-51-3910-0. [Google Scholar]
- Hernández-Delgado, E.A.; Mercado-Molina, A.E.; Suleimán-Ramos, S.E.; Lucking, M.A. Multi-disciplinary lessons learned from low-tech coral farming and reef rehabilitation practices. II. Coral demography and social-ecological benefits. In Corals in a Changing World; Duque-Beltrán, C., Tello-Camacho, E., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 245–268. ISBN 978-953-51-3910-0. [Google Scholar]
- Kindeberg, T.; Almström, B.; Skoog, M.; Olsson, P.A.; Hollander, J. Toward a multifunctional nature-based coastal defense: A review of the interaction between beach nourishment and ecological restoration. Nord. J. Bot. 2023, 1, e03751. [Google Scholar] [CrossRef]
- Wu, L.; Ouyang, Y.; Cai, L.; Dai, J.; Wu, Y. Ecological restoration approaches for degraded muddy coasts: Recommendations and practice. Ecol. Indic. 2023, 149, 110182. [Google Scholar] [CrossRef]
- Li, S.; Xie, T.; Bai, J.; Cui, B. Degradation and ecological restoration of estuarine wetlands in China. Wetlands 2022, 42, 90. [Google Scholar] [CrossRef]
- Sen, S. Combating tropical cyclones Amphan, Yaas and After: Eco-restoration of coastal zones. Harvest 2021, 6, 33–38. [Google Scholar]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Drake, J.A.P.; Bradford, A.; Marsalek, J. Review of environmental performance of permeable pavement systems: State of the knowledge. Water Qual. Res. J. Can. 2013, 48, 203–222. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for modeling of stormwater management and economics of green infrastructure practices: A review. Water Air Soil Pollut. 2014, 225, 1–20. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Locatelli, B.; Catterall, C.P.; Imbach, P.; Kumar, C.; Lasco, R.; Marín-Spiotta, E.; Mercer, B.; Powers, J.S.; Schwartz, N.; Uriarte, M. Tropical reforestation and climate change: Beyond carbon. Restor. Ecol. 2015, 23, 337–343. [Google Scholar] [CrossRef]
- Shipman, B.; Stojanovic, T. Facts, fictions, and failures of integrated coastal zone management in Europe. Coast. Manag. 2007, 35, 375–398. [Google Scholar] [CrossRef]
- Portman, M.E.; Esteves, L.S.; Le, X.Q.; Khan, A.Z. Improving integration for integrated coastal zone management: An eight country study. Sci. Total Environ. 2012, 439, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.; Cundill, G. Towards increased community-engaged ecological restoration: A review of current practice and future directions. Ecol. Restor. 2018, 36, 208–218. [Google Scholar] [CrossRef]
- Gold, W.; Ewing, K.; Banks, J.; Groom, M.; Hinckley, T.; Secord, D.; Shebitz, D. Collaborative ecological restoration. Science 2006, 312, 1880–1881. [Google Scholar] [CrossRef] [PubMed]
- Wehi, P.M.; Lord, J.M. Importance of including cultural practices in ecological restoration. Conserv. Biol. 2017, 31, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Kuwae, T.; Crooks, S. Linking climate change mitigation and adaptation through coastal green–gray infrastructure: A perspective. Coast. Eng. J. 2021, 63, 188–199. [Google Scholar] [CrossRef]
- Casal-Campos, A.; Fu, G.; Butler, D.; Moore, A. An integrated environmental assessment of green and gray infrastructure strategies for robust decision making. Environ. Sci. Technol. 2015, 49, 8307–8314. [Google Scholar] [CrossRef] [PubMed]
- Griggs, G.B.; Fulton-Bennett, K. Rip rap revetments and seawalls and their effectiveness along the central California coast. Shore Beach 1988, 56, 3–11. [Google Scholar]
- Griggs, G.B.; Tait, J.F.; Corona, W. The interaction of seawalls and beaches: Seven years of monitoring. Shore Beach 1994, 62, 21–28. [Google Scholar]
- Vaidya, A.M.; Kori, S.K.; Kudale, M.D. Shoreline response to coastal structures. Aquat. Procedia 2015, 4, 333–340. [Google Scholar] [CrossRef]
- Mohanty, P.K.; Patra, S.K.; Bramha, S.; Seth, B.; Pradhan, U.; Behera, B.; Mishra, P.; Panda, U.S. Impact of groins on beach morphology: A case study near Gopalpur Port, east coast of India. J. Coast. Res. 2012, 28, 132–142. [Google Scholar] [CrossRef]
- d’Angremond, K.; van den Berg, E.J.; de Jager, J.H. Use and behavior of gabions in coastal protection. In Coastal Engineering; ASCE: Reston, VA, USA, 1992; pp. 1748–1757. [Google Scholar]
- Shin, E.C.; Oh, Y.I. Coastal erosion prevention by geotextile tube technology. Geotext. Geomembr. 2007, 25, 264–277. [Google Scholar] [CrossRef]
- Pagliai, A.B.; Varriale, A.C.; Crema, R.; Galletti, M.C.; Zunarelli, R.V. Environmental impact of extensive dredging in a coastal marine area. Mar. Pollut. Bull. 1985, 16, 483–488. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.; Lewis, R.R., III. Environmental impacts of dredging on seagrasses: A review. Mar. Pollut. Bull. 2006, 52, 1553–1572. [Google Scholar] [CrossRef]
- Bianchini, A.; Cento, F.; Guzzini, A.; Pellegrini, M.; Saccani, C. Sediment management in coastal infrastructures: Techno-economic and environmental impact assessment of alternative technologies to dredging. J. Environ. Manag. 2019, 248, 109332. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hashim, M.; Bujang, J.S.; Zakaria, M.H.; Muslim, A.M. Assessment of the impact of coastal reclamation activities on seagrass meadows in Sungai Pulai estuary, Malaysia, using Landsat data (1994–2017). Int. J. Remote Sens. 2019, 40, 3571–3605. [Google Scholar] [CrossRef]
- Silberman, J.; Klock, M. The recreation benefits of beach renourishment. Ocean. Shorel. Manag. 1988, 11, 73–90. [Google Scholar] [CrossRef]
- McFarland, S.; Whitcombe, L.; Collins, M. Recent shingle beach renourishment schemes in the UK: Some preliminary observations. Ocean. Coast. Manag. 1994, 25, 143–149. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A.; Rosado-Matías, B.J. Long-lasting impacts of beach renourishment on nearshore urban coral reefs: A glimpse of future impacts of shoreline erosion, climate change and sea level rise. Ann. Mar. Biol. Res. 2017, 4, 1021. [Google Scholar]
- Albert, C.; Spangenberg, J.H.; Schröter, B. Nature-based solutions: Criteria. Nature 2017, 543, 315. [Google Scholar] [CrossRef]
- Cheong, S.-M.; Silliman, B.; Wong, P.P.; van Wesenbeeck, B.; Kim, C.-K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekker, F.; Paalvast, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
- Perkins, M.J.; Ng, T.P.; Dudgeon, D.; Bonebrake, T.C.; Leung, K.M. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar. Coast. Shelf Sci. 2015, 167, 504–515. [Google Scholar] [CrossRef]
- Liversage, K.; Chapman, M.G. Coastal ecological engineering and habitat restoration: Incorporating biologically diverse boulder habitat. Mar. Ecol. Prog. Ser. 2018, 593, 173–185. [Google Scholar] [CrossRef]
- Lewis, R.R., III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Hashim, R.; Kamali, B.; Tamin, N.M.; Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 2010, 86, 118–124. [Google Scholar] [CrossRef]
- Rinkevich, B. Climate change and active reef restoration—Ways of constructing the “reefs of tomorrow”. J. Mar. Sci. Eng. 2015, 3, 111–127. [Google Scholar] [CrossRef]
- Rinkevich, B. Ecological engineering approaches in coral reef restoration. ICES J. Mar. Sci. 2021, 78, 410–420. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; Bos, A.R.; de Jonge, V.N.; Hanssen, L.S.A.M.; Hermus, D.C.R.; de Jong, D.J. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar. Pollut. Bull. 2009, 58, 179–188. [Google Scholar] [CrossRef]
- James, R.K.; Silva, R.; van Tussenbroek, B.I.; Escudero-Castillo, M.; Mariño-Tapia, I.; Dijkstra, H.A.; van Westen, R.M.; Pietrzak, J.D.; Candy, A.S.; Katsman, C.A.; et al. Maintaining tropical beaches with seagrass and algae: A promising alternative to engineering solutions. BioScience 2019, 69, 136–142. [Google Scholar] [CrossRef]
- Tan, Y.M.; Dalby, O.; Kendrick, G.A.; Statton, J.; Sinclair, E.A.; Fraser, M.W.; Macreadie, P.I.; Gillies, C.L.; Coleman, R.A.; Waycott, M.; et al. Seagrass restoration is possible: Insights and lessons from Australia and New Zealand. Front. Mar. Sci. 2020, 7, 617. [Google Scholar] [CrossRef]
- Schotanus, J.; Walles, B.; Capelle, J.J.; van Belzen, J.; van de Koppel, J.; Bouma, T.J. Promoting self-facilitating feedback processes in coastal ecosystem engineers to increase restoration success: Testing engineering measures. J. Appl. Ecol. 2020, 57, 1958–1968. [Google Scholar] [CrossRef]
- Scyphers, S.B.; Picou, J.S.; Brumbaugh, R.D.; Powers, S.P. Integrating societal perspectives and values for improved stewardship of a coastal ecosystem engineer. Ecol. Soc. 2014, 19, 38. [Google Scholar] [CrossRef]
- Pilarczyk, K. Alternatives for coastal protection. J. Water Resour. Environ. Eng. 2008, 23, 181–188. [Google Scholar]
- Silva, R.; Mendoza, E.; Mariño-Tapia, I.; Martínez, M.L.; Escalante, E. An artificial reef improves coastal protection and provides a base for coral recovery. J. Coast. Res. 2016, 75, 467–471. [Google Scholar] [CrossRef]
- Lokesha, S.V.; Sannasiraj, S.A. Artificial reefs: A review. Int. J. Ocean. Clim. Syst. 2013, 4, 117–124. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, B. Concepts and methods of ecological engineering. Ecol. Eng. 2003, 20, 339–361. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.H.; Hu, J.; Ho, Y.S. A review of published wetland research, 1991–2008: Ecological engineering and ecosystem restoration. Ecol. Eng. 2010, 36, 973–980. [Google Scholar] [CrossRef]
- Hall Cushman, J.; Waller, J.C.; Hoak, D.R. Shrubs as ecosystem engineers in a coastal dune: Influences on plant populations, communities and ecosystems. J. Veg. Sci. 2010, 21, 821–831. [Google Scholar] [CrossRef]
- Burt, J.A.; Bartholomew, A. Towards more sustainable coastal development in the Arabian Gulf: Opportunities for ecological engineering in an urbanized seascape. Mar. Pollut. Bull. 2019, 142, 93–102. [Google Scholar] [CrossRef]
- Bayraktarov, E.; Stewart-Sinclair, P.J.; Brisbane, S.; Boström-Einarsson, L.; Saunders, M.I.; Lovelock, C.E.; Possingham, H.P.; Mumby, P.J.; Wilson, K.A. Motivations, success, and cost of coral reef restoration. Restor. Ecol. 2019, 27, 981–991. [Google Scholar] [CrossRef]
- Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.; Hancock, B.; Harrison, P.; Hein, M.; Shaver, E.; et al. Coral restoration–A systematic review of current methods, successes, failures and future directions. PLoS ONE 2020, 15, e0226631. [Google Scholar] [CrossRef]
- Young, C.N.; Schopmeyer, S.A.; Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 2012, 88, 1075–1098. [Google Scholar] [CrossRef]
- Rinkevich, B. Rebuilding coral reefs: Does active reef restoration lead to sustainable reefs? Curr. Opin. Environ. Sustain. 2014, 7, 28–36. [Google Scholar] [CrossRef]
- Ladd, M.C.; Shantz, A.A. Trophic interactions in coral reef restoration: A review. Food Webs 2020, 24, e00149. [Google Scholar] [CrossRef]
- Viehman, T.S.; Reguero, B.G.; Lenihan, H.S.; Rosman, J.H.; Storlazzi, C.D.; Goergen, E.A.; Canals Silander, M.F.; Groves, S.H.; Holstein, D.M.; Bruckner, A.W.; et al. Coral restoration for coastal resilience: Integrating ecology, hydrodynamics, and engineering at multiple scales. Ecosphere 2023, 14, e4517. [Google Scholar] [CrossRef]
- Costa, M.B.; Araújo, M.; Araújo, T.C.; Siegle, E. Influence of reef geometry on wave attenuation on a Brazilian coral reef. Geomorphology 2016, 253, 318–327. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Molina, A.E.; Ruiz-Diaz, C.P.; Sabat, A.M. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J. Nat. Conserv. 2015, 24, 17–23. [Google Scholar] [CrossRef]
- Mercado-Molina, A.E.; Sabat, A.M.; Hernández-Delgado, E.A. Population dynamics of diseased corals: Effects of a shut down reaction outbreak in Puerto Rican Acropora cervicornis. Adv. Mar. Biol. 2020, 87, 61–82. [Google Scholar]
- Mercado-Molina, A.E.; Ruiz-Diaz, C.P.; Pérez, M.E.; Rodríguez-Barreras, R.; Sabat, A.M. Demography of the threatened coral Acropora cervicornis: Implications for its management and conservation. Coral Reefs 2015, 34, 1113–1124. [Google Scholar] [CrossRef]
- van Oppen, M.J.H.; Gates, R.D.; Blackall, L.L.; Cantin, N.; Chakravarti, L.J.; Chan, W.Y.; Cormick, C.; Crean, A.; Damjanovic, K.; Epstein, H.; et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 2017, 23, 3437–3448. [Google Scholar] [CrossRef] [PubMed]
- Quigley, K.M.; Hein, M.; Suggett, D.J. Translating the 10 golden rules of reforestation for coral reef restoration. Conserv. Biol. 2022, 36, e13890. [Google Scholar] [CrossRef] [PubMed]
- Meesters, H.W.; Smith, S.R.; Becking, L.E. A Review of Coral Reef Restoration Techniques; Institute for Marine Resources and Ecosystem Studies: Ijmuiden, The Netherlands, 2015; pp. 1–37. [Google Scholar]
- Pérez-Pagán, B.S.; Mercado-Molina, A.E. Evaluation of the effectiveness of 3D-printed corals to attract coral reef fish at Tamarindo Reef, Culebra, Puerto Rico. Conserv. Evid. 2018, 15, 43–47. [Google Scholar]
- Vardi, T.; Hoot, W.C.; Levy, J.; Shaver, E.; Winters, R.S.; Banaszak, A.T.; Baums, I.B.; Chamberland, V.F.; Cook, N.; Gulko, D.; et al. Six priorities to advance the science and practice of coral reef restoration worldwide. Restor. Ecol. 2021, 29, e13498. [Google Scholar] [CrossRef]
- Cunha, A.H.; Marbá, N.N.; van Katwijk, M.M.; Pickerell, C.; Henriques, M.; Bernard, G.; Ferreira, M.A.; Garcia, S.; Garmendia, J.M.; Manent, P. Changing paradigms in seagrass restoration. Restor. Ecol. 2012, 20, 427–430. [Google Scholar] [CrossRef]
- Reynolds, L.K.; Waycott, M.; McGlathery, K.J.; Orth, R.J. Ecosystem services returned through seagrass restoration. Restor. Ecol. 2016, 24, 583–588. [Google Scholar] [CrossRef]
- Unsworth, R.K.; McKenzie, L.J.; Collier, C.J.; Cullen-Unsworth, L.C.; Duarte, C.M.; Eklöf, J.S.; Jarvis, J.C.; Jones, B.L.; Nordlund, L.M. Global challenges for seagrass conservation. Ambio 2019, 48, 801–815. [Google Scholar] [CrossRef]
- Unsworth, R.K.; Cullen-Unsworth, L.C.; Jones, B.L.; Lilley, R.J. The planetary role of seagrass conservation. Science 2022, 377, 609–613. [Google Scholar] [CrossRef]
- Fonseca, M.S. Addy revisited: What has changed with seagrass restoration in 64 years? Ecol. Restor. 2011, 29, 73–81. [Google Scholar] [CrossRef]
- Hernández-Delgado, E.A.; Toledo-Hernández, C.; Ruíz-Díaz, C.P.; Gómez-Andújar, N.; Medina-Muñiz, J.L.; Canals-Silander, M.F.; Suleimán-Ramos, S.E. Hurricane impacts and the resilience of the invasive sea vine, Halophila stipulacea: A case study from Puerto Rico. Estuaries Coasts 2020, 43, 1263–1283. [Google Scholar] [CrossRef]
- Lewis, R.R. Mangrove restoration—Costs and benefits of successful ecological restoration. In Proceedings of the Mangrove Valuation Workshop, Universiti Sains Malaysia, Penang, Malaysia, 4–8 April 2001; Volume 4, pp. 1–18. [Google Scholar]
- Lewis, R.R. Methods and criteria for successful mangrove forest restoration. In Coastal Wetlands: An Integrated Ecosystem Approach; Elsevier: Amsterdam, The Netherlands, 2009; pp. 787–800. [Google Scholar]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Te Brake, B.; Van Huijgevoort, M.H.; Dijksma, R. Hydrological classification, a practical tool for mangrove restoration. PLoS ONE 2016, 11, e0150302. [Google Scholar] [CrossRef] [PubMed]
- Spenceley, A.P. The role of pneumatophores in sedimentary processes. Mar. Geol. 1977, 24, M31–M37. [Google Scholar] [CrossRef]
- Kida, M.; Fujitake, N. Organic carbon stabilization mechanisms in mangrove soils: A review. Forests 2020, 11, 981. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Barbier, E.; Duarte, C.M. Tackling the mangrove restoration challenge. PLoS Biol. 2022, 20, e3001836. [Google Scholar] [CrossRef] [PubMed]
- Friess, D.A. Mangrove rehabilitation along urban coastlines: A Singapore case study. Reg. Stud. Mar. Sci. 2017, 16, 279–289. [Google Scholar] [CrossRef]
- Karstens, S.; Dorow, M.; Bochert, R.; Stybel, N.; Schernewski, G.; Mühl, M. Stepping stones along urban coastlines—Improving habitat connectivity for aquatic fauna with constructed floating wetlands. Wetlands 2022, 42, 76. [Google Scholar] [CrossRef]
- Friess, D.A.; Gatt, Y.M.; Fung, T.K.; Alemu, J.B.; Bhatia, N.; Case, R.; Chua, S.C.; Huang, D.; Kwan, V.; Lim, K.E.; et al. Blue carbon science, management and policy across a tropical urban landscape. Landsc. Urban Plan. 2023, 230, 104610. [Google Scholar] [CrossRef]
- Windom, H.L. Contamination of the marine environment from land-based sources. Mar. Pollut. Bull. 1992, 25, 32–36. [Google Scholar] [CrossRef]
- Bonkosky, M.; Hernández-Delgado, E.A.; Sandoz, B.; Robledo, I.E.; Norat-Ramírez, J.; Mattei, H. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays. Mar. Pollut. Bull. 2009, 58, 45–54. [Google Scholar] [CrossRef]
- Keeley, A.T.H.; Basson, G.; Cameron, D.R.; Heller, N.E.; Huber, P.R.; Schloss, C.A.; Thorne, J.H.; Merenlender, A.M. Making habitat connectivity a reality. Conserv. Biol. 2018, 32, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Grayson, J.E.; Chapman, M.G.; Underwood, A.J. The assessment of restoration of habitat in urban wetlands. Landsc. Urban Plan. 1999, 43, 227–236. [Google Scholar] [CrossRef]
- Newman, S.P.; Meesters, E.H.; Dryden, C.S.; Williams, S.M.; Sanchez, C.; Mumby, P.J.; Polunin, N.V. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 2015, 84, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, K. Beach nourishment and coastal habitats: Research needs to improve compatibility. Restor. Ecol. 2005, 13, 215–222. [Google Scholar] [CrossRef]
- Na’Im, I.; Shahrizal, A.R.M.; Safari, M.D. A short review of submerged breakwaters. MATEC Web Conf. 2018, 203, 01005. [Google Scholar]
- Bradbury, A.; Allsop, W.; Latham, J.-P.; Mannion, M.; Poole, A. Rock Armour for Rubble Mound Breawaters, Sea Walls, and Revetments: Recent Progress; Technical Report; Hydraulics Research Wallingford: Wallingford, UK, 1988; pp. 1–43 + App. [Google Scholar]
- Kraus, N.C.; McDougal, W.G. The effects of seawalls on the beach: Part I, an updated literature review. J. Coast. Res. 1996, 12, 691–701. [Google Scholar]
- Bleck, M. Wave Attenuation by Artificial Reefs; PIANC: Brussels, Belgium, 2006; pp. 1–33. [Google Scholar]
- Srisuwan, C.; Rattanamanee, P. Modeling of Seadome as artificial reefs for coastal wave attenuation. Ocean. Eng. 2015, 103, 198–210. [Google Scholar] [CrossRef]
- Marin-Diaz, B.; Fivash, G.S.; Nauta, J.; Temmink, R.J.; Hijner, N.; Reijers, V.C.; Cruijsen, P.P.; Didderen, K.; Heusinkveld, J.H.; Penning, E.; et al. On the use of large-scale biodegradable artificial reefs for intertidal foreshore stabilization. Ecol. Eng. 2021, 170, 106354. [Google Scholar] [CrossRef]
- Hixon, M.A.; Beets, J.P. Shelter characteristics and Caribbean fish assemblages: Experiments with artificial reefs. Bull. Mar. Sci. 1989, 44, 666–680. [Google Scholar]
- Komyakova, V.; Chamberlain, D.; Jones, G.P.; Swearer, S.E. Assessing the performance of artificial reefs as substitute habitat for temperate reef fishes: Implications for reef design and placement. Sci. Total Environ. 2019, 668, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.S.; Puckett, B.; Gittman, R.K.; Peterson, C.H. Living shorelines enhanced the resilience of saltmarshes to Hurricane Matthew (2016). Ecol. Appl. 2018, 28, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Currin, C.A. Living shorelines for coastal resilience. In Coastal Wetlands, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1023–1053. [Google Scholar]
- Martínez, M.L.; Hesp, P.A.; Gallego-Fernández, J.B. Coastal dune restoration: Trends and perspectives. Restoration of Coastal Dunes. In Restoration of Coastal Dunes; Springer Series on Environmental Management; Springer: Berlin/Heidelberg, Germany, 2013; pp. 323–339. [Google Scholar]
- Lithgow, D.; Martínez, M.L.; Gallego-Fernández, J.B.; Hesp, P.A.; Flores, P.; Gachuz, S.; Rodríguez-Revelo, N.; Jiménez-Orocio, O.; Mendoza-González, G.; Álvarez-Molina, L.L. Linking restoration ecology with coastal dune restoration. Geomorphology 2013, 199, 214–224. [Google Scholar] [CrossRef]
- Drury, C.; Lirman, D. Making biodiversity work for coral reef restoration. Biodiversity 2017, 18, 23–25. [Google Scholar] [CrossRef]
- Shaver, E.C.; McLeod, E.; Hein, M.Y.; Palumbi, S.R.; Quigley, K.; Vardi, T.; Mumby, P.J.; Smith, D.; Montoya-Maya, P.; Muller, E.M.; et al. A roadmap to integrating resilience into the practice of coral reef restoration. Glob. Chang. Biol. 2022, 28, 4751–4764. [Google Scholar] [CrossRef]
- Ladd, M.C.; Miller, M.W.; Hunt, J.H.; Sharp, W.C.; Burkepile, D.E. Harnessing ecological processes to facilitate coral restoration. Front. Ecol. Environ. 2018, 16, 239–247. [Google Scholar] [CrossRef]
- Ladd, M.C.; Burkepile, D.E.; Shantz, A.A. Near-term impacts of coral restoration on target species, coral reef community structure, and ecological processes. Restor. Ecol. 2019, 27, 1166–1176. [Google Scholar] [CrossRef]
- Chin, A.; Heupel, M.R.; Simpfendorfer, C.A.; Tobin, A.J. Ontogenetic movements of juvenile blacktip reef sharks: Evidence of dispersal and connectivity between coastal habitats and coral reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 2013, 23, 468–474. [Google Scholar] [CrossRef]
- Griffin, L.P.; Finn, J.T.; Diez, C.; Danylchuk, A.J. Movements, connectivity, and space use of immature green turtles within coastal habitats of the Culebra Archipelago, Puerto Rico: Implications for conservation. Endanger. Species Res. 2019, 40, 75–90. [Google Scholar] [CrossRef]
- Mumby, P.J.; Broad, K.; Brumbaugh, D.R.; Dahlgren, C.P.; Harborne, A.R.; Hastings, A.; Holmes, K.E.; Kappel, C.V.; Micheli, F.; Sanchirico, J.N. Coral reef habitats as surrogates of species, ecological functions, and ecosystem services. Conserv. Biol. 2008, 22, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Bellwood, D.R.; Streit, R.P.; Brandl, S.J.; Tebbett, S.B. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct. Ecol. 2019, 33, 948–961. [Google Scholar] [CrossRef]
- Côté, I.M.; Darling, E.S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 2010, 8, e1000438. [Google Scholar] [CrossRef] [PubMed]
- Baskett, M.L.; Fabina, N.S.; Gross, K. Response diversity can increase ecological resilience to disturbance in coral reefs. Am. Nat. 2014, 184, E16–E31. [Google Scholar] [CrossRef] [PubMed]
- Harborne, A.R.; Mumby, P.J.; Ferrari, R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environ. Biol. Fishes 2012, 94, 431–442. [Google Scholar] [CrossRef]
- Santoso, P.; Setiawan, F.; Subhan, B.; Arafat, D.; Bengen, D.G.; Iqbal Sani, L.M.; Humphries, A.T.; Madduppa, H. Influence of coral reef rugosity on fish communities in marine reserves around Lombok Island, Indonesia. Environ. Biol. Fishes 2022, 105, 105–117. [Google Scholar] [CrossRef]
- Jones, G.P. The importance of recruitment to the dynamics of a coral reef fish population. Ecology 1990, 71, 1691–1698. [Google Scholar] [CrossRef]
- Sale, P.F. Maintenance of high diversity in coral reef fish communities. Am. Nat. 1977, 111, 337–359. [Google Scholar] [CrossRef]
- Roberts, C.M.; Ormond, R.F. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar. Ecol. Prog. Ser. 1987, 41, 1–8. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, E.P. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 1955, 25, 291–320. [Google Scholar] [CrossRef]
- Duarte, C.M. The future of seagrass meadows. Environ. Conserv. 2002, 29, 192–206. [Google Scholar] [CrossRef]
- Duarte, C.M.; Borum, J.; Short, F.T.; Walker, D.I. Seagrass ecosystems: Their global status and prospects. In Aquatic Ecosystems: Trends and Global Prospects; Cambridge University Press: Cambridge, UK, 2008; pp. 281–294. [Google Scholar]
- Macreadie, P.I.; Baird, M.E.; Trevathan-Tackett, S.M.; Larkum, A.W.; Ralph, P.J. Quantifying and modelling the carbon sequestration capacity of seagrass meadows–a critical assessment. Mar. Pollut. Bull. 2014, 83, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Kuwae, T. An unintended ecological benefit from human intervention: The enhancement of carbon storage in seagrass meadows. J. Appl. Ecol. 2021, 58, 2441–2452. [Google Scholar] [CrossRef]
- Friess, D.A. The potential for mangrove and seagrass blue carbon in Small Island States. Curr. Opin. Environ. Sustain. 2023, 64, 101324. [Google Scholar] [CrossRef]
- Huxham, M.; Whitlock, D.; Githaiga, M.; Dencer-Brown, A. Carbon in the coastal seascape: How interactions between mangrove forests, seagrass meadows and tidal marshes influence carbon storage. Curr. For. Rep. 2018, 4, 101–110. [Google Scholar] [CrossRef]
- Somerfield, P.J.; Yodnarasri, S.; Aryuthaka, C. Relationships between seagrass biodiversity and infaunal communities: Implications for studies of biodiversity effects. Mar. Ecol. Prog. Ser. 2002, 237, 97–109. [Google Scholar] [CrossRef]
- Duffy, J.E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 2006, 311, 233–250. [Google Scholar] [CrossRef]
- Flindt, M.R.; Pardal, M.Â.; Lillebø, A.I.; Martins, I.; Marques, J.C. Nutrient cycling and plant dynamics in estuaries: A brief review. Acta Oecol. 1999, 20, 237–248. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. Bioscience 2006, 56, 987–996. [Google Scholar] [CrossRef]
- Kumar, J.I.; Kumar, V.M.; Rajanna, K.B.; Mahesh, V.; Naik, K.A.; Pandey, A.K.; Manjappa, N.; Jag, P. Ecological benefits of mangrove. Life Sci. Leafl. 2014, 48, 85–88. [Google Scholar]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef]
- Nagelkerken, I.; van der Velde, G.; Gorissen, M.W.; Meijer, G.J.; Van’t Hof, T.; den Hartog, C. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 2000, 51, 31–44. [Google Scholar] [CrossRef]
- Mumby, P.J.; Edwards, A.J.; Arias-González, J.E.; Lindeman, K.C.; Blackwell, P.G.; Gall, A.; Gorczynska, M.I.; Harborne, A.R.; Pescod, C.L.; Renken, H.; et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 2004, 427, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B. Valuing the environment as input: Review of applications to mangrove-fishery linkages. Ecol. Econ. 2000, 35, 47–61. [Google Scholar] [CrossRef]
- Buelow, C.; Sheaves, M. A birds-eye view of biological connectivity in mangrove systems. Estuar. Coast. Shelf Sci. 2015, 152, 33–43. [Google Scholar] [CrossRef]
- Othman, M.A. Value of mangroves in coastal protection. Hydrobiologia 1994, 285, 277–282. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon sequestration in mangrove forests. Carbon Manag. 2012, 3, 313–322. [Google Scholar] [CrossRef]
- Inoue, T. Carbon sequestration in mangroves. In Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation; Kuwae, T., Hori, M., Eds.; Springer: Singapore, 2019; pp. 73–99. [Google Scholar]
- Field, C.B.; Osborn, J.G.; Hoffman, L.L.; Polsenberg, J.F.; Ackerly, D.D.; Berry, J.A.; Bjorkman, O.; Held, A.; Matson, P.A.; Mooney, H.A. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 1998, 7, 3–14. [Google Scholar] [CrossRef]
- Macintosh, D.J.; Ashton, E.C. A Review of Mangrove Biodiversity Conservation and Management; Centre for Tropical Ecosystems Research, University of Aarhus: Aarhus, Denmark, 2002. [Google Scholar]
- Vegh, T.; Jungwiwattanaporn, M.; Pendleton, L.; Murray, B. Mangrove Ecosystem Services Valuation: State of the Literature; NI WP 14-06; Duke University: Durham, NC, USA, 2014; pp. 1–15. [Google Scholar]
- Mitra, A. Ecosystem services of mangroves: An overview. In Mangrove Forests in India: Exploring Ecosystem Services; Springer: Cham, Switzerland, 2020; pp. 1–32. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Delgado, E.A. Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts 2024, 4, 235-286. https://doi.org/10.3390/coasts4020014
Hernández-Delgado EA. Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts. 2024; 4(2):235-286. https://doi.org/10.3390/coasts4020014
Chicago/Turabian StyleHernández-Delgado, Edwin A. 2024. "Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change" Coasts 4, no. 2: 235-286. https://doi.org/10.3390/coasts4020014
APA StyleHernández-Delgado, E. A. (2024). Coastal Restoration Challenges and Strategies for Small Island Developing States in the Face of Sea Level Rise and Climate Change. Coasts, 4(2), 235-286. https://doi.org/10.3390/coasts4020014