Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA
Abstract
:1. Introduction
1.1. Background
1.2. Study Area
2. Sea Level Rise
3. Materials and Methods
3.1. Response to Holocene Sea Level Rise
3.2. Sea Level Rise in the 20th and 21st Centuries
3.3. 21st Century Geomorphic Trajectories
4. Results
4.1. Holocene Evolution of the Georgia Bight Coastal Zone
4.1.1. Sedimentology, Stratigraphy, and Geomorphology
4.1.2. Geochronology
4.1.3. Sea Level Rise Tipping Points
4.2. Sea Level Rise in the 20th and 21st Centuries
5. Discussion
5.1. 21st Century Geomorphic Trajectories
5.2. Evidence of Recent Changes and Likely Outcomes of Faster Rates of Sea Level Rise
Location | NOAA ID | Latitude | Longitude | Observation of Period | Trend tstart–2022 | Trend 1993–2022 | Trend 2003–2022 |
---|---|---|---|---|---|---|---|
Beaufort, NC | 8656483 | 34.72 | −76.67 | 1964–2022 | 4.27 ± 0.05 | 5.82 ± 0.31 | 9.24 ± 1.03 |
Wilmington, NC | 8658120 | 34.23 | −77.95 | 1935–2022 | 2.65 ± 0.01 | 5.74 ± 0.37 | 10.86 ± 1.12 |
Springmaid, SC | 8661070 | 33.66 | −78.92 | 1977–2022 | 3.44 ± 0.11 | 4.86 ± 0.40 | 8.99 ± 1.26 |
Charleston, SC | 8665530 | 32.78 | −79.93 | 1901–2022 | 3.44 ± 0.01 | 6.32 ± 0.43 | 10.96 ± 1.40 |
Ft. Pulaski, SC | 8670870 | 32.03 | −80.90 | 1935–2022 | 3.52 ± 0.02 | 6.25 ± 0.49 | 10.62 ± 1.59 |
Fernandina Beach, FL | 8720030 | 30.67 | −81.47 | 1897–2022 | 2.23 ± 0.01 | 4.80 ± 0.57 | 8.24 ± 1.83 |
Average | 3.26 ± 0.21 | 5.63 ± 0.81 | 9.82 ± 0.31 |
Observation Extrapolation | Low | Intermediate-Low | Intermediate | Intermediate-High | High |
---|---|---|---|---|---|
Beaufort 223, 285, 405 | 290 [230, 370] | 330 [230, 370] | 370 [290, 460] | 440 [330, 570] | 490 [370, 640] |
Wilmington 149, 283, 463 | 270 [200, 340] | 300 [230, 380] | 340 [260, 430] | 400 [300, 540] | 460 [330, 600] |
Springmaid 177, 229, 374 | 260 [200, 330] | 300 [230, 370] | 340 [260, 430] | 400 [330, 540] | 460 [330, 600] |
Charleston 169, 291, 453 | 290 [230, 350] | 330 [260, 400] | 370 [300, 450] | 430 [330, 570] | 490 [370, 630] |
Fort Pulaski 176, 293, 446 | 290 [230, 350] | 330 [270, 350] | 370 [300, 450] | 430 [330, 570] | 500 [370, 640] |
Fernandina Beach 114, 228, 348 | 250 [190, 310] | 290 [230, 350] | 330 [260, 410] | 390 [290, 530] | 450 [330, 600] |
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopp, R.E.; Oppenheimer, M.; O’Reilly, J.L.; Drijfhout, S.S.; Edwards, T.L.; Fox-Kemper, B.; Garner, G.G.; Golledge, N.R.; Hermans, T.H.J.; Hewitt, H.T.; et al. Communicating Future Sea-Level Rise Uncertainty and Ambiguity to Assessment Users. Nat. Clim. Chang. 2023, 13, 648–660. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Eustatic Changes in Sea Level. Phys. Chem. Earth 1961, 4, 99–185. [Google Scholar] [CrossRef]
- Wheeler, R.R. Sanctity of Sea Level. Geol. Soc. Am. Bull. 1954, 65, 1325. [Google Scholar]
- Arnold, J.R.; Libby, W.F. Age Determinations by Radiocarbon Content: Checks with Samples of Known Age. Science 1949, 110, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Curray, J.R. Transgressions and Regressions. In Papers in Marine Geology; Miller, R.L., Ed.; Macmillan Publishing Co.: New York, NY, USA, 1964; pp. 175–203. [Google Scholar]
- Curray, J.R. Sediments and History of Holocene Transgression, Continental Shelf, Northwest Gulf of Mexico. In Recent Sediments, Northwest Gulf of Mexico; Special Volumes; American Association of Petroleum Geologists: Tulsa, Oklahoma, 1960; Volume 143, pp. 221–266. [Google Scholar]
- Shepard, F.P. Rise of Sea Level along Northwest Gulf of Mexico. In Recent Sediments, Northwest Gulf of Mexico; Special Volume; American Association of Petroleum Geologists: Tulsa, Oklahoma, 1960; Volume SP-21, pp. 338–381. [Google Scholar]
- Shepard, F.P. Late Pleistocene and Recent History of the Central Texas Coast. J. Geol. 1956, 64, 56–69. [Google Scholar] [CrossRef]
- Fischer, A.G. Stratigraphic Record of Transgressing Seas in Light of Sedimentation on Atlantic Coast of New Jersey. Bull. Am. Assoc. Pet. Geol. 1961, 45, 1656–1666. [Google Scholar] [CrossRef]
- Gorsline, D.S. Bottom Sediments of the Atlantic Shelf and Slope off the Southern United States. J. Geol. 1963, 71, 422–440. [Google Scholar] [CrossRef]
- Hails, J.R.; Hoyt, J.H. An Appraisal of the Evolution of the Lower Atlantic Coastal Plain of Georgia, U.S.A. Trans. Inst. Br. Geogr. 1969, 46, 53–68. [Google Scholar] [CrossRef]
- Milliman, J.D.; Emery, K.O. Sea Levels during the Past 35,000 Years. Science 1968, 162, 1121–1123. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Frankenberg, D. The Relict-Recent Sediment Boundary on the Georgia Continental Shelf. Acad. Sci. 1964, 22, 30–37. [Google Scholar]
- Swift, D.J.P. Coastal Erosion and Transgressive Stratigraphy. J. Geol. 1968, 76, 444–456. [Google Scholar] [CrossRef]
- Uchupi, E. Atlantic Continental Shelf and Slope of the United States–Physiography; Professional Paper; United States Geological Survey: Washington, DC, USA, 1968; pp. 1–30. [Google Scholar]
- Colquhoun, D.J. A Review of Cenozoic Evolution of the Southeastern United States Atlantic Coast North of the Georgia Trough. Quat. Int. 1995, 26, 35–41. [Google Scholar] [CrossRef]
- Field, M.E.; Meisburger, E.P. Geomorphology, Shallow Structure, and Sediments of the Florida Inner Continental Shelf, Cape Canaveral to Georgia; United States Army Corps of Engineers Coastal Engineering Research Center: Fort Belvoir, VA, USA, 1975; pp. 1–124. [Google Scholar]
- Hine, A.; Snyder, S. Coastal Lithosome Preservation—Evidence from the Shoreface and Inner Continental Shelf off Bogue Banks, North Carolina. Mar. Geol. 1985, 63, 307–330. [Google Scholar] [CrossRef]
- Milliman, J.D.; Pilkey, O.H.; Ross, D.A. Sediments of the Continental Margin off the Eastern United States. Geol. Soc. Am. Bull. 1972, 83, 1315–1334. [Google Scholar] [CrossRef]
- Pilkey, O.H.; Blackwelder, B.W.; Knebel, H.J.; Ayers, M.W. The Georgia Embayment Continental Shelf: Stratigraphy of a Submergence. Geol. Soc. Am. Bull. 1981, 92, 52–63. [Google Scholar] [CrossRef]
- Belknap, D.; Kraft, J.C. Holocene Relative Sea-Level Changes and Coastal Stratigraphic Units on the Northwest Flank of the Baltimore Canyon Trough Geosyncline. SEPM JSR 1977, 47, 610–629. [Google Scholar] [CrossRef]
- Heron, S.D.; Moslow, T.F.; Berelson, W.M.; Herbert, J.R.; Steele, G.A., III; Susman, K.R. Holocene Sedimentation of a Wave-Dominated Barrier Island Shoreface—Cape Lookout, North Carolina. Mar. Geol. 1984, 60, 413–434. [Google Scholar] [CrossRef]
- Kraft, J.C. Sedimentary Facies Patterns and Geologic History of a Holocene Marine Transgression. Geol. Soc. Am. Bull. 1971, 82, 2131–2158. [Google Scholar] [CrossRef]
- Oertel, G. Post-Pleistocene Island and Inlet Adjustments along the Georgia Coast. J. Sediment. Petrol. 1975, 45, 150–159. [Google Scholar]
- Hayes, M.O. The Georgia Bight Barrier System. In Geology of Holocene Barrier Island Systems; Springer: Heidelberg/Berlin, Germany, 1994; pp. 233–304. [Google Scholar]
- Hubbard, D.; Oertel, G.; Nummedal, D. The Role of Waves and Tidal Currents in the Development of Tidal-Inlet Sedimentary Structures and Sand Body Geometry: Examples from North Carolina, South Carolina, and Georgia. SEPM JSR 1979, 49, 1073–1092. [Google Scholar] [CrossRef]
- Clark, J.A.; Farrell, W.E.; Peltier, W.R. Global Changes in Postglacial Sea Level: A Numerical Calculation. Quat. Res. 1978, 9, 265–287. [Google Scholar] [CrossRef]
- Engelhart, S.E.; Horton, B.P. Holocene Sea Level Database for the Atlantic Coast of the United States. Quat. Sci. Rev. 2012, 54, 12–25. [Google Scholar] [CrossRef]
- Engelhart, S.E.; Horton, B.P.; Douglas, B.C.; Peltier, W.R.; Törnqvist, T.E. Spatial Variability of Late Holocene and 20th Century Sea-Level Rise along the Atlantic Coast of the United States. Geology 2009, 37, 1115–1118. [Google Scholar] [CrossRef]
- LeGrand, H.E. Summary of Atlantic Coastal Plain. Bull. Am. Assoc. Pet. Geol. 1961, 45, 1557–1571. [Google Scholar] [CrossRef]
- Van de Plassche, O.; Wright, A.J.; Horton, B.P.; Engelhart, S.E.; Kemp, A.C.; Mallinson, D.; Kopp, R.E. Estimating Tectonic Uplift of the Cape Fear Arch (South-eastern United) Using Reconstructions of Holocene Relative Sea Level. J. Quat. Sci. 2014, 29, 749–759. [Google Scholar] [CrossRef]
- Winker, C.D.; Howard, J.D. Correlation of Tectonically Deformed Shorelines on the Southern Atlantic Coastal Plain. Geology 1977, 5, 123–127. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, B.P.; Kemp, A.C.; Tebaldi, C. Past and Future Sea-Level Rise along the Coast of North Carolina, USA. Clim. Chang. 2015, 132, 693–707. [Google Scholar] [CrossRef]
- Toscano, M.A.; Macintyre, I.G. Corrected Western Atlantic Sea-Level Curve for the Last 11,000 Years Based on Calibrated 14C Dates from Acropora Palmata Framework and Intertidal Mangrove Peat. Coral Reefs 2003, 22, 257–270. [Google Scholar] [CrossRef]
- Hawkes, A.D.; Kemp, A.C.; Donnelly, J.P.; Horton, B.P.; Peltier, W.R.; Cahill, N.; Hill, D.F.; Ashe, E.; Alexander, C.R. Relative Sea-Level Change in Northeastern Florida (USA) during the Last ~8.0 Ka. Quat. Sci. Rev. 2016, 142, 90–101. [Google Scholar] [CrossRef]
- Walker, M.; Head, M.J.; Lowe, J.; Berkelhammer, M.; BjÖrck, S.; Cheng, H.; Cwynar, L.C.; Fisher, D.; Gkinis, V.; Long, A.; et al. Subdividing the Holocene Series/Epoch: Formalization of Stages/Ages and Subseries/Subepochs, and Designation of GSSPs and Auxiliary Stratotypes. J. Quat. Sci. 2019, 34, 173–186. [Google Scholar] [CrossRef]
- Horton, B.P.; Peltier, W.R.; Culver, S.J.; Drummond, R.; Engelhart, S.E.; Kemp, A.C.; Mallinson, D.; Thieler, E.R.; Riggs, S.R.; Ames, D.V.; et al. Holocene Sea-Level Changes along the North Carolina Coastline and Their Implications for Glacial Isostatic Adjustment Models. Quat. Sci. Rev. 2009, 28, 1725–1736. [Google Scholar] [CrossRef]
- Kemp, A.C.; Horton, B.P.; Donnelly, J.P.; Mann, M.E.; Vermeer, M.; Rahmstorf, S. Climate Related Sea-Level Variations over the Past Two Millennia. Proc. Natl. Acad. Sci. USA 2011, 108, 11017–11022. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Deposition Models for Chronological Records. Quat. Sci. Rev. 2008, 27, 42–60. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Bayesian Analysis of Radiocarbon Rates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Bronk Ramsey, C.; Lee, S. Recent and Planned Developments of the Program OXCAL. Radiocarbon 2013, 55, 720–730. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- OxCal On Line IntCal20 Model. Available online: https://c14.arch.ox.ac.uk/oxcal/OxCal.html (accessed on 11 December 2023).
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities along US Coastlines; NOAA: Silver Spring, MD, USA, 2022; pp. 1–111. [Google Scholar]
- NOAA Sea Level Trends—NOAA Tides & Currents. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8723214 (accessed on 7 August 2021).
- Peng, D.; Hill, E.M.; Meltzner, A.J.; Switzer, A.D. Tide Gauge Records Show That the 18.61-year Nodal Tidal Cycle Can Change High Water Levels by up to 30 cm. J. Geophys. Res. Ocean. 2019, 124, 736–749. [Google Scholar] [CrossRef]
- Ciracì, E.; Rignot, E.; Scheuchl, B.; Tolpekin, V.; Wollersheim, M.; An, L.; Milillo, P.; Bueso-Bello, J.-L.; Rizzoli, P.; Dini, L. Melt Rates in the Kilometer-Size Grounding Zone of Petermann Glacier, Greenland, before and during a Retreat. Proc. Natl. Acad. Sci. USA 2023, 120, e2220924120. [Google Scholar] [CrossRef]
- Hamlington, B.D.; Chambers, D.P.; Frederikse, T.; Dangendorf, S.; Fournier, S.; Buzzanga, B.; Nerem, R.S. Observation-Based Trajectory of Future Sea Level for the Coastal United States Tracks near High-End Model Projections. Commun. Earth Environ. 2022, 3, 230. [Google Scholar] [CrossRef]
- Overland, J.; Dunlea, E.; Box, J.E.; Corell, R.; Forsius, M.; Kattsov, V.; Olsen, M.S.; Pawlak, J.; Reiersen, L.-O.; Wang, M. The Urgency of Arctic Change. Polar Sci. 2019, 21, 6–13. [Google Scholar] [CrossRef]
- Parkinson, R.W. Decelerating Holocene Sea-Level Rise and Its Influence on Southwest Florida Coastal Evolution: A Transgressive/Regressive Stratigraphy. J. Sediment. Res. 1989, 59, 960–972. [Google Scholar] [CrossRef]
- Turner, R.E.; Kearney, M.S.; Parkinson, R.W. Sea-Level Rise Tipping Point of Delta Survival. J. Coast. Res. 2018, 34, 470–474. [Google Scholar] [CrossRef]
- Parkinson, R.W.; Wdowinski, S. A Unified Conceptual Model of Coastal Response to Accelerating Sea Level Rise, Florida, USA. Sci. Total Environ. 2023, 892, 164448. [Google Scholar] [CrossRef] [PubMed]
- Wanless, H.R.; Parkinson, R.W.; Tedesco, L.P. Sea Level Control on Stability of Everglades Wetlands. In Everglades: The Ecosystem and Its Restoration; St. Lucie Press: Delray Beach, FL, USA, 1994. [Google Scholar]
- Parkinson, R.W.; Wdowinski, S. Accelerating Sea-Level Rise and the Fate of Mangrove Plant Communities in South Florida, U.S.A. Geomorphology 2022, 412, 108329. [Google Scholar] [CrossRef]
- Berelson, W.M.; Heron, S.D. Correlations between Holocene Flood Tidal Delta and Barrier Island Inlet Fill Sequences: Back Sound-Shackleford Banks, North Carolina. Sedimentology 1985, 32, 215–222. [Google Scholar] [CrossRef]
- Conery, I.; Walsh, J.P.; Mallinson, D.; Corbett, D.R. Marine Geology and Sand Resources of the Southern North Carolina Inner Shelf. Mar. Georesour. Geotechnol. 2022, 40, 1084–1107. [Google Scholar] [CrossRef]
- Greenhorne; O’Mara; Ocean Surveys Inc. Marine Geophysical Investigation for the Evaluation of Sand Resources Areas Offshore Topsail Island North Carolina; United States Army Corps of Engineers: Wilmington, NC, USA, 2002; p. 95. [Google Scholar]
- Lazar, K.B.; Mallinson, D.J.; Culver, S.J. Late Quaternary Development of the Croatan Beach Ridge Complex, Bogue Sound, Bogue Banks, NC, USA and Implications for Coastal Evolution. Estuar. Coast. Shelf Sci. 2016, 174, 49–64. [Google Scholar] [CrossRef]
- Moslow, T.F.; Heron, S.D. Holocene Depositional History of a Microtidal Cuspate Foreland Cape: Cape Lookout, North Carolina. Mar. Geol. 1981, 41, 251–270. [Google Scholar] [CrossRef]
- Moslow, T.F.; Heron, S.D. The Outer Banks of North Carolina. In Geology of Holocene Barrier Island Systems; Springer: Heidelberg/Berlin, Germany, 1994; pp. 47–74. [Google Scholar]
- Riggs, S.; Snyder, S.; HIne, A.; Mearns, D. Hardbottom Morphology and Relationship to the Geological Framework—Mid-Atlantic Continental Shelf. J. Sediment. Res. 1996, 66, 830–846. [Google Scholar]
- Rodriguez, A.B.; Yu, W.; Theuerkauf, E.J. Abrupt Increase in Washover Deposition along a Transgressive Barrier Island during the Late Nineteenth Century Acceleration in Sea-Level Rise. In Barrier Dynamics and Response to Changing Climate; Moore, L.J., Murray, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 121–145. ISBN 978-3-319-68084-2. [Google Scholar]
- Timmons, E.A.; Rodriguez, A.B.; Mattheus, C.R.; DeWitt, R. Transition of a Regressive to a Transgressive Barrier Island Due to Back-Barrier Erosion, Increased Storminess, and Low Sediment Supply: Bogue Banks, North Carolina, USA. Mar. Geol. 2010, 278, 100–114. [Google Scholar] [CrossRef]
- Baldwin, W.E.; Morton, R.; Denny, J.F.; Dadisman, S.V.; Schwab, W.C.; Gayes, P.T.; Driscoll, N.W. Maps Showing the Stratigraphic Framework of South Carolina’s Long Bay from Little River to Winyah Bay; U.S. Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Baldwin, W.E.; Morton, R.A.; Putney, T.R.; Katuna, M.P.; Harris, M.S.; Gayes, P.T.; Driscoll, N.W.; Denny, J.F.; Schwab, W.C. Migration of the Pee Dee River System Inferred from Ancestral Paleochannels Underlying the South Carolina Grand Strand and Long Bay Inner Shelf. Geol. Soc. Am. Bull. 2006, 118, 533–549. [Google Scholar] [CrossRef]
- Barnhardt, W.; Denny, J.; Baldwin, W.; Schwab, W.; Morton, R.; Gayes, P.; Driscoll, N. Geologic Framework of the Long Bay Inner Shelf: Implications for Coastal Evolution in South Carolina. In Proceedings of the Coastal Sediments ’07; New Orleans, LA, USA, 13–17 May 2007; American Society of Civil Engineers: New York, NY, USA, 2007; pp. 2151–2160. [Google Scholar]
- Denny, J.F.; Baldwin, W.E.; Schwab, W.C.; Gayes, P.T.; Morton, R.A.; Driscoll, N.W. Morphology and Textures of Modern Sediments on the Inner Shelf of South Carolina’s Long Bay from Little River Inlet to Winhah Bay; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2007; p. 64. [Google Scholar]
- Denny, J.F.; Schwab, W.C.; Baldwin, W.E.; Barnhardt, W.A.; Gayes, P.T.; Morton, R.A.; Warner, J.C.; Driscoll, N.W.; Voulgaris, G. Holocene Sediment Distribution on the Inner Continental Shelf of Northeastern South Carolina: Implications for the Regional Sediment Budget and Long-Term Shoreline Response. Cont. Shelf Res. 2013, 56, 56–70. [Google Scholar] [CrossRef]
- Gardner, L.R.; Porter, D.E. Stratigraphy and Geologic History of a Southeastern Salt Marsh Basin, North Inlet, South Carolina, USA. Wetl. Ecol. Manag. 2001, 9, 371–385. [Google Scholar] [CrossRef]
- Gayes, P.T.; Scott, D.B.; Collins, E.S.; Nelson, D.D. A Late Holocene Sea-Level Fluctuation in South Carolina. In Quaternary Coasts of the United States—Marine and Lacustrine Systems; Special Publication; SEPM (Society for Sedimentary Geology): Tulsa, Oklahoma, 1992; Volume 48, pp. 155–160. [Google Scholar]
- Long, J.H.; Hanebuth, T.J.J.; Lüdmann, T. The Quaternary Stratigraphic Architecture of a Low-Accommodation, Passive-Margin Continental Shelf (Santee Delta Region, South Carolina, USA). J. Sediment. Res. 2020, 90, 1549–1571. [Google Scholar] [CrossRef]
- Wright, E.; Gayes, P.; Donovan-Ealy, P.; Baldwin, W.; Harris, M.S. Assessment of Beach Renourishment Resources on the Inner Shelf Seaward of Pawleys Island, South Carolina, USA.; Minerals Management Service: Herndon, VA, USA, 1999; p. 86. [Google Scholar]
- Duc, A.W. Back-Barrier Stratigraphy of Kiawah Island, South Carolina. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 1981. [Google Scholar]
- Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P. Quaternary Geomorphology and Modern Coastal Development in Response to an Inherent Geologic Framework: An Example from Charleston, South Carolina. J. Coast. Res. 2005, 211, 49–64. [Google Scholar] [CrossRef]
- Imperato, D.; Sexton, W.; Hayes, M. Stratigraphy and Sediment Characteristics of a Mesotidal Ebb-Tidal Delta, North Edisto Inlet, South Carolina. SEPM JSR 1988, 58, 950–958. [Google Scholar] [CrossRef]
- Long, J.; Hanebuth, T.J.J.; Alexander, C.R. Sedimentology and Stratigraphic Architecture of Quaternary Paleochannels along the Inner Shelf of South Carolina, U.S.A. In Proceedings of the Southeastern Geological Society of America 68th Annual Meeting, Charleston, SC, USA, 28–29 March 2019. [Google Scholar]
- Long, J.H.; Hanebuth, T.J.J.; Alexander, C.R.; Wehmiller, J.F. Depositional Environments and Stratigraphy of Quaternary Paleochannel Systems Offshore of the Georgia Bight, Southeastern U.S.A. J. Coast. Res. 2021, 37, 883–905. [Google Scholar] [CrossRef]
- CB & I—Coastal Planning & Engineering, Inc. Bureau of Ocean Energy Management Atlantic Sand Assessment Project Reconnaissance Data Processing and Interpretation; Florida Department of Environmental Protection: Tallahassee, FL, USA, 2017; p. 260. [Google Scholar]
- Phelps, D.C.; Holem, G.W. Sand Source Availability Investigations: The Search for Sand for Duval County, Florida Beach Renourishment. Available online: https://www.boem.gov/marine-minerals/marine-mineral-research-studies/marine-mineral-resource-evaluation-studies (accessed on 1 September 2023).
- Meisburger, E.; Field, M. Neogene Sediments of Atlantic Inner Continental Shelf off Northern Florida. Bull. Am. Assoc. Pet. Geol. 1976, 60, 2019–2037. [Google Scholar] [CrossRef]
- Vaughn, D.R.; Bianchi, T.S.; Shields, M.R.; Kenney, W.F.; Osborne, T.Z. Blue Carbon Soil Stock Development and Estimates within Northern Florida Wetlands. Front. Earth Sci. 2021, 9, 552721. [Google Scholar] [CrossRef]
- DePratter, C.B.; Howard, J.D. History of Shoreline Change Determined by Archaeological Dating: Georgia Coast, USA. Trans. Gulf Coast Assoc. Geol. Soc. 1977, 27, 252–258. [Google Scholar]
- Howard, J.D.; Scott, R.M. Comparison of Pleistocene and Holocene Barrier Island Beach-to-Offshore Sequences, Georgia and Northwest Florida Coasts, U.S.A. Sediment. Geol. 1983, 34, 167–183. [Google Scholar] [CrossRef]
- Domingues, R.; Goni, G.; Baringer, M.; Volkov, D. What Caused the Accelerated Sea Level Changes along the U.S. East Coast during 2010–2015? Geophys. Res. Lett. 2018, 45, 13367–13376. [Google Scholar] [CrossRef]
- Mitrovica, J.X.; Gomez, N.; Clark, P.U. The Sea-Level Fingerprint of West Antarctic Collapse. Science 2009, 323, 753. [Google Scholar] [CrossRef] [PubMed]
- Valle-Levinson, A.; Dutton, A.; Martin, J.B. Spatial and Temporal Variability of Sea Level Rise Hot Spots over the Eastern United States: Sea Level Rise Hot Spots over Eastern U.S. Geophys. Res. Lett. 2017, 44, 7876–7882. [Google Scholar] [CrossRef]
- Ezer, T. Analysis of the Changing Patterns of Seasonal Flooding along the U.S. East Coast. Ocean Dyn. 2020, 70, 241–255. [Google Scholar] [CrossRef]
- Hinkel, J.; Nicholls, R.J.; Tol, R.S.J.; Wang, Z.B.; Hamilton, J.M.; Boot, G.; Vafeidis, A.T.; McFadden, L.; Ganopolski, A.; Klein, R.J.T. A Global Analysis of Erosion of Sandy Beaches and Sea-Level Rise: An Application of DIVA. Glob. Planet. Chang. 2013, 111, 150–158. [Google Scholar] [CrossRef]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea Level Rise Shown to Drive Coastal Erosion. Eos Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.-L.; Fang, J. A Global Analysis of Subsidence, Relative Sea-Level Change and Coastal Flood Exposure. Nat. Clim. Chang. 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global Warming and Coastal Erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef]
- Gornitz, V. Global Coastal Hazards from Future Sea Level Rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Voss, C.M.; Christian, R.R.; Morris, J.T. Marsh Macrophyte Responses to Inundation Anticipate Impacts of Sea-Level Rise and Indicate Ongoing Drowning of North Carolina Marshes. Mar. Biol. 2013, 160, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Conner, W.; Whitmire, S.; Duberstein, J.; Stalter, R.; Baden, J. Changes within a South Carolina Coastal Wetland Forest in the Face of Rising Sea Level. Forests 2022, 13, 414. [Google Scholar] [CrossRef]
- Jones, M.C.; Bernhardt, C.E.; Krauss, K.W.; Noe, G.B. The Impact of Late Holocene Land Use Change, Climate Variability, and Sea Level Rise on Carbon Storage in Tidal Freshwater Wetlands on the Southeastern United States Coastal Plain. J. Geophys. Res. Biogeosci. 2017, 122, 3126–3141. [Google Scholar] [CrossRef]
- Wang, H.; Krauss, K.W.; Noe, G.B.; Dai, Z.; Trettin, C.C. Soil Salinity and Water Level Interact to Generate Tipping Points in Low Salinity Tidal Wetlands Responding to Climate Change. Estuaries Coasts 2023, 46, 1808–1823. [Google Scholar] [CrossRef]
- Craft, C.B. Tidal Freshwater Forest Accretion Does Not Keep Pace with Sea Level Rise. Glob. Chang. Biol. 2012, 18, 3615–3623. [Google Scholar] [CrossRef]
- Morris, J.T.; Langley, J.A.; Vervaeke, W.C.; Dix, N.; Feller, I.C.; Marcum, P.; Chapman, S.K. Mangrove Trees Outperform Saltmarsh Grasses in Building Elevation but Collapse Rapidly under High Rates of Sea-level Rise. Earth’s Future 2023, 11, e2022EF003202. [Google Scholar] [CrossRef]
- Moorman, M.C.; Ladin, Z.S.; Tsai, E.; Smith, A.; Bessler, A.; Richter, J.; Harrison, R.; Van Druten, B.; Stanton, W.; Hayes, C.; et al. Will They Stay or Will They Go—Understanding South Atlantic Coastal Wetland Transformation in Response to Sea-Level Rise. Estuaries Coasts 2023, 1–13. [Google Scholar] [CrossRef]
- Johnson, J.M.; Moore, L.J.; Ells, K.; Murray, A.B.; Adams, P.N.; MacKenzie, R.A.; Jaeger, J.M. Recent Shifts in Coastline Change and Shoreline Stabilization Linked to Storm Climate Change. Earth Surf. Process. Landf. 2015, 40, 569–585. [Google Scholar] [CrossRef]
- Sankar, R.D. Quantifying the Effects of Increased Storminess and Sea-Level Change on the Morphology of Sandy Barrier Islands along the Northwestern and Atlantic Coasts of Florida. Ph.D. Thesis, Florida State University, Tallahassee, FL, USA, 2015. [Google Scholar]
- Silvester, R. Technical Note. Wave Reflection at Sea Walls and Breakwaters. Proc. Inst. Civ. Eng. 1972, 51, 123–131. [Google Scholar] [CrossRef]
- Birchler, J.; Doran, K.S.; Long, J.; Stockdon, H. Hurricane Matthew: Predictions, Observations, and an Analysis of Coastal Change; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2019; p. 48. [Google Scholar]
- Phillips, J. Event Timing and Sequence in Coastal Shoreline Erosion: Hurricanes Bertha and Fran and the Neuse Estuary. J. Coast. Res. 2023, 15, 616–623. [Google Scholar]
- Stauble, D.K.; Seabergh, W.C.; Hales, L.Z. Effects of Hurricane Hugo on the South Carolina Coast. J. Coast. Res. 1991, 8, 129–162. [Google Scholar]
- Thieler, E.R.; Young, R.S. Quantitative Evaluation of Coastal Geomorphological Changes in South Carolina after Hurricane Hugo. J. Coast. Res. 1991, 8, 187–200. [Google Scholar]
- Backstrom, J.T.; Loureiro, C.; Eulie, D.O. Impacts of Hurricane Matthew on Adjacent Developed and Undeveloped Barrier Islands in Southeastern North Carolina. Reg. Stud. Mar. Sci. 2022, 53, 102391. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kossin, J.P.; Jagger, T.H. The Increasing Intensity of the Strongest Tropical Cyclones. Nature 2008, 455, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K. Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Sobel, A.H.; Camargo, S.J.; Hall, T.M.; Lee, C.-Y.; Tippett, M.K.; Wing, A.A. Human Influence on Tropical Cyclone Intensity. Science 2016, 353, 242–246. [Google Scholar] [CrossRef]
- Xi, D.; Lin, N.; Gori, A. Increasing Sequential Tropical Cyclone Hazards along the US East and Gulf Coasts. Nat. Clim. Chang. 2023, 13, 258–265. [Google Scholar] [CrossRef]
- Bozzeda, F.; Ortega, L.; Costa, L.L.; Fanini, L.; Barboza, C.A.M.; McLachlan, A.; Defeo, O. Global Patterns in Sandy Beach Erosion: Unraveling the Roles of Anthropogenic, Climatic and Morphodynamic Factors. Front. Mar. Sci. 2023, 10, 1270490. [Google Scholar] [CrossRef]
- Wright, L.D.; Thom, B.G. Coastal Morphodynamics and Climate Change: A Review of Recent Advances. J. Mar. Sci. Eng. 2023, 11, 1997. [Google Scholar] [CrossRef]
- Cabana, D.; Rölfer, L.; Evadzi, P.; Celliers, L. Enabling Climate Change Adaptation in Coastal Systems: A Systematic Literature Review. Earth’s Future 2023, 11, e2023EF003713. [Google Scholar] [CrossRef]
- NOAA. National Ocean Service 2022 Sea Level Rise Technical Report: Data and Tools. Available online: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-data.html (accessed on 11 December 2023).
Coastal Sector | Location (Length) | Physical Oceanography | Geologic Cross-Section |
---|---|---|---|
I. Southern North Carolina | Cape Lookout to Cape Fear (170 km) | Wave dominated | 1. Bogue Banks |
II. Northern South Carolina | Cape Fear to Cape Romain (180 km) | Mixed energy | 2. Long Bay |
III. Southern South Carolina | Cape Romain to Beaufort River (160 km) | Tide dominated | 3. Kiawah Island |
IV. Georgia–Florida | Beaufort River to Mayport (200 km) | Mixed energy | 4. Fernandina Beach |
Author | Rate of Sea Level Rise (mm yr−1) | |||
---|---|---|---|---|
Duration (Years) | Late Holocene (0–4.2 cal kyr BP) | Middle Holocene (4.2–8.2 cal kyr BP) | Early Holocene (8.2–11.7 cal kyr BP) | |
Hawkes et al. [35] | 7500 | 0.7 | NA | NA |
Kopp et al. [33] | 11,600 | 0.9 | 2.4 | 5.2 |
Toscano and Macintyre [34] | 11,000 | 0.8 | 2.4 | 5.1 |
Average | 0.8 | 2.4 | 5.2 |
Cross-Section | Location | Study Area | Methods | Map Inset Key (km2) | Observation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | Bb | Bi | Sf | Sh | H | CB | GP | Author | TFS | TSS | HB | PC | |||
1. BB | Shackleford Banks | x | x | x | a | [55] | x | ||||||||
1. BB | Bogue Banks | x | x | x | b (2000) | [56] | x | x | x | ||||||
1. BB | Onslow Bay | x | x | x | d | [57] | x | x | x | ||||||
1. BB | Cape Lookout | x | x | a | [22] | x | |||||||||
1. BB | Onslow Bay | x | x | x | x | x | b (14,000) | [18] | x | x | x | x | |||
1. BB | Bogue Sound | x | x | x | x | x | b | [58] | x | x | |||||
1. BB | Cape Lookout | x | x | x | a | [59] | x | ||||||||
1. BB | Shackleford Banks | x | x | x | a | [60] | x | ||||||||
1. BB | Onslow Bay | x | x | e | [61] | x | x | ||||||||
1. BB | Onslow Beach | x | x | x | c | [62] | x | ||||||||
1. BB | Bogue Banks | x | x | x | x | x | x | b (270) | [63] | x | x | x | |||
2. LB | Long Bay | x | x | x | x | h (40,000) | [64] | x | x | x | |||||
2. LB | Long Bay | x | x | x | x | h (40,000) | [65] | x | x | x | |||||
2. LB | Long Bay | x | x | x | h (40,000) | [66] | x | x | x | ||||||
2. LB | Brunswick County | x | x | x | g (2000) | [56] | x | x | x | ||||||
2. LB | Long Bay | x | x | x | h | [67] | x | x | x | ||||||
2. LB | Long Bay | x | x | x | h | [68] | x | x | x | ||||||
2. LB | North Inlet marsh | x | x | x | x | x | h | [69] | x | ||||||
2. LB | Murrels Inlet | x | x | x | h | [70] | x | ||||||||
2. LB | Cape Romain | x | x | x | x | x | j | [71] | x | x | |||||
2. LB | Long Bay | x | x | x | i (40,000) | [20] | x | x | |||||||
2. LB | Pawleys Inlet | x | x | x | x | h | [72] | x | x | ||||||
3. KI | Kiawah Island | x | x | x | x | k | [73] | x | |||||||
3. KI | Kiawah Island | x | x | x | x | x | x | x | k | [74] | x | x | x | ||
3. KI | North Edisto Inlet | x | x | x | k | [75] | x | ||||||||
3. KI | Kiawah Island | x | x | x | k | [76] | x | x | |||||||
3. KI | Kiawah Island | x | x | x | k (2800) | [77] | x | x | |||||||
3. KI | Savanah River | x | x | x | l (40,000) | [20] | x | x | |||||||
4. FB | Fernandina Beach | x | n (2500) | [78] | x | x | x | ||||||||
4. FB | Fernandina Beach | x | x | x | x | n (1500) | [17] | x | x | x | x | ||||
4. FB | Cumberland Island | x | x | x | m (2800) | [77] | x | x | |||||||
4. FB | Fernandina Beach | x | x | x | n | [79] | x | x | |||||||
4. FB | Fernandina Beach | x | x | x | n | [80] | x | x | x | ||||||
4. FB | Fernandina Beach | x | x | o | [81] | x |
Item | Description |
---|---|
Cross-Section | The study domain of this investigation is subdivided into four coastal sectors. Four geologic cross-sections were constructed as representative of each: |
BB | Bogue Banks. Southern North Carolina. |
LB | Long Bay. Northern South Carolina. |
KI | Kiawah Island. Southern South Carolina. |
FB | Fernandina Beach. Southern Georgia—northeast Florida. |
Study Area | Area in which the study was conducted: |
M | Mainland. Emergent landscape located landward of the back barrier bay (aka lagoon, estuary) shoreline. |
Bb | Back barrier. Subtidal or intertidal environments located between the shorelines of the mainland and barrier island. Typical environments include bay, overwash, marsh, and relict or active flood tidal shoals. |
Bi | Barrier island. Emergent sand body located between the back barrier bay and Atlantic Ocean. |
Sf | Shoreface. Subtidal, seaward dipping sand wedge extending from the barrier island shoreline to a depth of ~10 m. |
Sh | Shelf. Relatively flat and featureless offshore zone extending from the toe of shoreface to the shelf break (~50 m). Along the shoreface boundary and extending seaward to ~20 m, this zone may host ebb tidal deltas and linear sand shoals with significant bathymetric relief. |
Methods | Methodological approach used by original author(s) in their investigations: |
H | Historical. Includes aerial photographs, nautical charts, field observations, and/or grab samples. |
CB | Core borings. Includes core borings recovered using brute force, rotary, vibratory, and gravity methods. |
GP | Geophysical. Includes survey records obtained using seismic reflection, sidescan sonar, swath bathymetry, and ground penetrating radar. |
Map Inset Key | Key to location of data shown in Figure 3. In some cases, the original studies were conducted in more than one coastal sector as defined in this investigation. Thus, some of the original studies are listed more than once. In those cases, the total aerial extent of that study is indicated by a numeric value (km2). |
Authors | Citation identifying author(s) whose published data and observations were used in this investigation to construct the generalized geologic cross-sections shown in Figure 4. |
Observation | Sedimentologic, stratigraphic, and/or paleoenvironmental observations reported by the authors and relevant to this investigation: |
TFS | Transgressive facies sequence. Stratigraphic onlapping sequence of coastal facies indicative of the landward migration and upward translation of the coastal zone (i.e., erosional shoreface retreat). |
TSS | Transgressive sand sheet. Thin (~1 m) and discontinuous veneer of unconsolidated sediment observed on the lower shoreface and inner shelf. These sediments unconformably overly older strata and are separated from them by a ravinement surface. |
HB | Hardbottom. Indurated surface on the sea floor. May reflect the presence of older, lithified strata or syn-sedimentary induration at the sediment-water interface. Common on ‘sediment-starved’ continental shelves. |
PC | Paleochannel. Incised ‘V-shaped’ valleys carved or cut into the underlying lithified strata or unconsolidated sediments, respectfully, by fluvial or tidal processes. Vertical and horizontal dimensions vary as a function of genesis and ravinement depth of cut. |
Sector | Study Objective | Location | Datum | Setting | Material | N | Author |
---|---|---|---|---|---|---|---|
sNC | Paleoenvironmental | Bogue Sound | Top of core | Marsh | Shell | 4 | [55] |
Sea level history | Southern North Carolina | Mean sea level | Not specified | Salt peat | 11 | [28] | |
Sea level history | Southern North Carolina | Mean sea level | Not specified | Peat | 2 | [37] | |
Paleoenvironmental | Bogue Sound | Mean sea level | Back barrier bay | Shell | 6 | [63] | |
Wood | 1 | ||||||
Paleoenvironmental | Bogue Sound | Mean sea level | Back barrier bay | Foraminifera | 2 | [58] | |
Paleoenvironmental | Oslow Beach | NAVD88 | Plant material | 1 | [62] | ||
Shell | 1 | ||||||
nSC | Sea level history | Northern South Carolina | Mean sea level | Not specified | Salt peat | 10 | [28] |
Sea level history | Merrells Inlet | Mean high water | Marsh | Peat | 9 | [70] | |
Paleoenvironmental | North Inlet | Mean high marsh | Back barrier bay | Shell | 11 | [69] | |
Paleoenvironmental | Continental shelf | Sea level | Sand sheet | Shell | 7 | [71] | |
sSC | Paleoenvironmental | Kiawah Island | High marsh | Marsh | Shell | 1 | [73] |
Sea level history | Southern South Carolina | Mean sea level | Not specified | Salt peat | 21 | [28] | |
Paleoenvironmental | Continental shelf | Sea level | Sand sheet | Shell | 9 | [71,77] | |
G-F | Paleoenvironmental | St. Augustine Beach | Top of core | Back barrier marsh | Wetland | 12 | [81] |
Paleoenvironmental | Continental shelf | Sea level | Sand sheet | Shell | 5 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parkinson, R.W.; Wdowinski, S. Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA. Coasts 2024, 4, 1-20. https://doi.org/10.3390/coasts4010001
Parkinson RW, Wdowinski S. Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA. Coasts. 2024; 4(1):1-20. https://doi.org/10.3390/coasts4010001
Chicago/Turabian StyleParkinson, Randall W., and Shimon Wdowinski. 2024. "Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA" Coasts 4, no. 1: 1-20. https://doi.org/10.3390/coasts4010001
APA StyleParkinson, R. W., & Wdowinski, S. (2024). Geomorphic Response of the Georgia Bight Coastal Zone to Accelerating Sea Level Rise, Southeastern USA. Coasts, 4(1), 1-20. https://doi.org/10.3390/coasts4010001