Studies on 1D Electronic Noise Filtering Using an Autoencoder
Abstract
1. Introduction
2. Materials and Methods
2.1. Waveform Generation
2.2. Square Wave
2.3. Triangular Wave
2.4. Sine Wave
2.5. CNN
3. Real-World Noisy Signal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016; pp. 499–500. [Google Scholar]
- Leite, N.M.N.; Pereira, E.T.; Gurjão, E.C.; Veloso, L.R. Deep Convolutional Autoencoder for EEG Noise Filtering. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018. [Google Scholar]
- Fuchs, J.; Dubey, A.; Lübke, M.; Weigel, R.; Lurz, F.E.F. The Automotive Radar Interference Mitigation using a Convolutional Autoencoder. In Proceedings of the IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020. [Google Scholar]
- Yasenko, L.; Klyatchenko, Y.; Tarasenko-Klyatchenko, O. Image noise reduction by denoising autoencoder. In Proceedings of the 11th IEEE International Conference on Dependable Systems, Services and Technologies, DESSERT’2020, Kyiv, Ukraine, 14–18 May 2020. [Google Scholar]
- Gao, F.; Li, B.; Chen, L.; Wei, X.; Shang, Z.; He, C. Ultrasonic signal denoising based on autoencoder. Rev. Sci. Instrum. 2020, 91, 045104. [Google Scholar] [CrossRef] [PubMed]
- Saad, O.M.; Chen, Y. Deep denoising autoencoder for seismic random noise attenuation. Geophysics 2020, 85, 367–376. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, X. One-Dimensional Residual Convolutional Autoencoder Based Feature Learning for Gearbox Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 6347–6358. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors 2019, 19, 972. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.H.; Jhang, Y.S.; Chang, Y.C.; Wang, S.T.; Chang, C.Y.; Lai, S.C. Lightweight Denoising Autoencoder Design for Noise Removal in Electrocardiography. IEEE Access 2022, 10, 98104–98116. [Google Scholar] [CrossRef]
- Zhang, M.; Diao, M.; Guo, L. Convolutional Neural Networks for Automatic Cognitive Radio Waveform Recognition. IEEE Access 2017, 5, 11074–11082. [Google Scholar] [CrossRef]
- Kim, J.; Ko, J.; Choi, H.; Kim, H. Printed Circuit Board Defect Detection Using Deep Learning via a Skip-Connected Convolutional Autoencoder. Sensors 2021, 21, 4968. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Feng, J.; Zhan, L.; Li, Z.; Qian, F.; Yan, Y. Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder. Entropy 2021, 23, 339. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ma, W.; Lou, J.; Jiang, J.; Huang, Y.; Shi, Z.; Shen, Q.; Yang, X. Circuit reliability prediction based on deep autoencoder network. Neurocomputing 2019, 370, 140–154. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, M.; Zhan, L.; Hoang, Z.M. Automatic LPI Radar Waveform Recognition using CNN. IEEE Access 2018, 6, 4207–4219. [Google Scholar] [CrossRef]
- Si, W.; Wan, C.; Zhang, C. Towards an accurate radar waveform recognition algorithm based on dense CNN. Multimed. Tools Appl. 2021, 80, 1179–1192. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, W.; Hou, C. Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network. IEEE Access 2019, 7, 112339–112347. [Google Scholar] [CrossRef]
- Taswell, C. The what, how, and why of wavelet shrinkage denoising. Comput. Sci. Eng. 2000, 2, 12–19. [Google Scholar] [CrossRef]
- Gomez, J.L.; Velis, D.R. A simple method inspired by empirical mode decomposition for denoising seismic data. Geophysics 2016, 81, 403–413. [Google Scholar] [CrossRef]
- Moore, R.; Ezekiel, S.; Blasch, E. Denoising one-dimensional signals with curvelets and contourlets. In Proceedings of the NAECON 2014—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 24–27 June 2014. [Google Scholar]
- Green, L. Understanding the importance of signal integrity. IEEE Circuits Devices Mag. 1999, 15, 7–10. [Google Scholar] [CrossRef]
- Sewak, M.; Karim, M.R.; Pujari, P. Practical Convolutional Networks, 1st ed.; Packt: Birmingham, UK, 2018; pp. 1–211. [Google Scholar]
- Github Support Files. Available online: https://github.com/mperoconsult/CNN/ (accessed on 11 November 2024).
- Abdipour, A.; Moradi, G.; Saboktakin, S. Design and implementation of a noise generator. In Proceedings of the IEEE International RF and Microwave Conference, Kuala Lampur, Malaysia, 2–4 December 2008. [Google Scholar]
- Zhang, C.; Yu, J.; Wang, S. Fault detection and recognition of multivariate process based on feature learning of one-dimensional convolutional neural network and stacked denoised autoencoder. Int. J. Prod. Res. 2021, 59, 2426–2449. [Google Scholar] [CrossRef]
Waveform | Time [s] |
---|---|
Rectangular | 82.7 |
Triangular | 82.2 |
Sine | 81.5 |
Ref. | Vector Size | Application | Improvement | Real-World Test |
---|---|---|---|---|
[2] | 1 × 7680 | EEG | 6 dB | Yes |
[7] | 1 × 8192 | Gearboxes | 96% defective recogn. | Yes |
[9] | 1 × 1024 | EKG | 25 dB | No |
[16] | 1 × 1024 | radar | 95% recogn. result | No |
[24] | 1 × 1024 | Manufacturing | 95% recogn. result | Yes |
This study | 1 × 1000 | Electronic waveforms | 3 dB | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perotoni, M.B.; Lucio, L.F. Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge 2024, 4, 571-581. https://doi.org/10.3390/knowledge4040030
Perotoni MB, Lucio LF. Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge. 2024; 4(4):571-581. https://doi.org/10.3390/knowledge4040030
Chicago/Turabian StylePerotoni, Marcelo Bender, and Lincoln Ferreira Lucio. 2024. "Studies on 1D Electronic Noise Filtering Using an Autoencoder" Knowledge 4, no. 4: 571-581. https://doi.org/10.3390/knowledge4040030
APA StylePerotoni, M. B., & Lucio, L. F. (2024). Studies on 1D Electronic Noise Filtering Using an Autoencoder. Knowledge, 4(4), 571-581. https://doi.org/10.3390/knowledge4040030