Custom Methodology to Improve Geospatial Interpolation at Regional Scale with Open-Source Software
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Used Dataset and Monitoring Networks
2.3. The Inverse Distance Weighted Algorithm Implementation
2.4. The Augmented Inverse Distance Weighted Algorithm Implemented
2.5. Cross-Validation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfaro-Saiz, E.; García-González, M.E.; del Río, S.; Penas, Á.; Rodríguez, A.; Alonso-Redondo, R. Incorporating bioclimatic and biogeographic data in the construction of species distribution models in order to prioritize searches for new populations of threatened flora. Plant Biosyst. 2015, 149, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Shul’gin, A.M. Bioclimatology as a Scientific Discipline and Its Current Objectives. Sov. Geogr. 1960, 1, 67–74. [Google Scholar] [CrossRef]
- Pignatti, S. Ecologia Vegetale; UTET: Turin, Italy, 1995; ISBN 8802046700. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; Volume 9781107057999, pp. 1–1535. [Google Scholar] [CrossRef] [Green Version]
- Sectors Affected. Available online: https://ec.europa.eu/clima/eu-action/adaptation-climate-change/how-will-we-be-affected/sectors-affected_en (accessed on 24 December 2021).
- UNDESA World Social Report 2020|DISD. Available online: https://www.un.org/development/desa/dspd/world-social-report/2020-2.html (accessed on 24 December 2021).
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Massarelli, C.; Ancona, V.; Galeone, C.; Uricchio, V.F. Methodology for the implementation of monitoring plans with different spatial and temporal scales of plant protection products residues in water bodies based on site-specific environmental pressures assessments. Hum. Ecol. Risk Assess. Int. J. 2019, 26, 1341–1358. [Google Scholar] [CrossRef]
- Viggiano, M.; Busetto, L.; Cimini, D.; Di Paola, F.; Geraldi, E.; Ranghetti, L.; Ricciardelli, E.; Romano, F. A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements. Agric. For. Meteorol. 2019, 276–277, 107590. [Google Scholar] [CrossRef]
- Wackernagel, H. Multivariate Geostatistics. Earth-Sci. Rev. 1999, 48, 132–133. [Google Scholar] [CrossRef]
- Hudson, G.; Wackernagel, H. Mapping temperature using kriging with external drift: Theory and an example from scotland. Int. J. Climatol. 1994, 14, 77–91. [Google Scholar] [CrossRef]
- Hungerford, R.D.; Nemani, R.R.; Running, S.W.; Coughlan, J.C. MTCLIM: A Mountain Microclimate Simulation Model; Res. Pap. INT-RP-414; US Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1989; Volume 414, p. 52. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Saz-Sánchez, M.A.; Cuadrat, J.M. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Clim. Res. 2003, 24, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Johnson, D.R. Spatial-Temporal Analysis of Temperature Using Smoothing Spline ANOVA. J. Clim. 1997, 11, 18–28. [Google Scholar] [CrossRef]
- Jiang, H.; Schörgendorfer, A.; Hwang, Y.; Amemiya, Y. A pratical approach to spatio-temporal analysis. Stat. Sin. 2015, 25, 369–384. [Google Scholar] [CrossRef] [Green Version]
- Sahu, S.K.; Mardia, K.V. Recent trends in modeling spatio-temporal data. In Proceedings of the Meeting of the Italian Statistical Society on Statistics and the Environment, Messina, Italy, 21–23 September 2005; pp. 69–83. [Google Scholar]
- Im, H.K.; Rathouz, P.J.; Frederick, J.E. Space–time modeling of 20 years of daily air temperature in the Chicago metropolitan region. Environmetrics 2009, 20, 494–511. [Google Scholar] [CrossRef]
- Loubier, J.C. Optimizing the Interpolation of Temperatures by GIS: A Space Analysis Approach. Mathematics 2010, 97–107. [Google Scholar] [CrossRef]
- Jian, W.; Zhili, S.; Qiang, Y.; Rui, L. Two accuracy measures of the Kriging model for structural reliability analysis. Reliab. Eng. Syst. Saf. 2017, 167, 494–505. [Google Scholar] [CrossRef]
- Kurtzman, D.; Kadmon, R. Mapping of temperature variables in Israel: Sa comparison of different interpolation methods. Clim. Res. 1999, 13, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Liberoff, A.L.; Flaherty, S.; Hualde, P.; García Asorey, M.I.; Fogel, M.L.; Pascual, M.A. Assessing land use and land cover influence on surface water quality using a parametric weighted distance function. Limnologica 2019, 74, 28–37. [Google Scholar] [CrossRef]
- Pimentel, R.; Lopes, D.J.H.; Mexia, A.M.M.; Mumford, J.D. Validation of a geographic weighted regression analysis as a tool for area-wide integrated pest management programs for Ceratitis capitata Wiedemann (Diptera: Tephritidae) on Terceira Island, Azores. Int. J. Pest Manag. 2016, 63, 172–184. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Nematollahi, O.; Mijani, N.; Shorabeh, S.N.; Firozjaei, H.K.; Toomanian, A. An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning. Renew. Energy 2019, 136, 1130–1146. [Google Scholar] [CrossRef]
- Singh, V.; Xiaosheng, Q. Data assimilation for constructing long-term gridded daily rainfall time series over Southeast Asia. Clim. Dyn. 2019, 53, 3289–3313. [Google Scholar] [CrossRef]
- Radi, N.F.A.; Zakaria, R.; Azman, M.A.Z. Estimation of missing rainfall data using spatial interpolation and imputation methods. AIP Conf. Proc. 2015, 1643, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Suhaila, J.; Deni, S.M.; Jemain, A.A. Revised spatial weighting methods for estimation of missing rainfall data. Asia-Pac. J. Atmos. Sci. 2008, 44, 93–104. [Google Scholar]
- CLIMPAG|DATA and MAPS|LocClim: Local Climate Estimator. Available online: https://www.fao.org/nr/climpag/pub/en0201_en.asp (accessed on 25 November 2021).
- Dobesch, H.; Dumolard, P.; Dyras, I. Spatial Interpolation for Climate Data: The Use of Gis in Climatology and Meteorology; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 284. [Google Scholar]
- Liu, Y.; Chen, Z.; Hu, B.D.; Jin, J.K.; Wu, Z. A non-uniform spatiotemporal kriging interpolation algorithm for landslide displacement data. Bull. Eng. Geol. Environ. 2019, 78, 4153–4166. [Google Scholar] [CrossRef]
- Wu, C.Y.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River. Ann. GIS 2019, 25, 133–151. [Google Scholar] [CrossRef]
- Pellicone, G.; Caloiero, T.; Modica, G.; Guagliardi, I. Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). Int. J. Climatol. 2018, 38, 3651–3666. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234. [Google Scholar] [CrossRef]
- Chi Siamo|Agrometeopuglia—ARIF PUGLIA. Available online: http://www.agrometeopuglia.it/chi-siamo (accessed on 24 December 2021).
- FAO and the 2030 Agenda for Sustainable Development|Sustainable Development Goals|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/sustainable-development-goals/overview/fao-and-the-2030-agenda-for-sustainable-development/en/ (accessed on 27 December 2021).
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theor. Appl. Climatol. 2017, 132, 663–682. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Sun, W.; Xue, J.; Xie, Y. Identifying redundant monitoring stations in an air quality monitoring network. Atmos. Environ. 2018, 190, 256–268. [Google Scholar] [CrossRef]
- Kanevski, M.; Volpi, M.; Copa, L.; Kanevski, M.; Volpi, M.; Copa, L. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms. EGUGA 2010, 12, 2915. [Google Scholar]
- Chen, K.; Ni, M.; Cai, M.; Wang, J.; Huang, D.; Chen, H.; Wang, X.; Liu, M. Optimization of a Coastal Environmental Monitoring Network Based on the Kriging Method: A Case Study of Quanzhou Bay, China. Biomed Res. Int. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Iwahashi, K.; Shimadera, H.; Yamamoto, K.; Kondo, A. Optimization of air monitoring networks using chemical transport model and search algorithm. Atmos. Environ. 2015, 122, 22–30. [Google Scholar] [CrossRef] [Green Version]
- How Inverse Distance Weighted Interpolation Works—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm (accessed on 27 December 2021).
- Masih, I.; Maskey, S.; Uhlenbrook, S.; Smakhtin, V. Assessing the Impact of Areal Precipitation Input on Streamflow Simulations Using the SWAT Model1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 179–195. [Google Scholar] [CrossRef]
- Puglia Region—Regional Planning Service Office Digital Terrain Model of Puglia Region. Available online: http://webapps.sit.puglia.it/freewebapps/DTM/index.html (accessed on 28 November 2021).
- Welcome to Python.org. Available online: https://www.python.org/ (accessed on 27 December 2021).
- Welcome to the Python GDAL/OGR Cookbook!—Python GDAL/OGR Cookbook 1.0 Documentation. Available online: http://pcjericks.github.io/py-gdalogr-cookbook/index.html# (accessed on 3 June 2021).
- GDAL—GDAL Documentation. Available online: https://gdal.org/index.html (accessed on 3 June 2021).
- Kanevski, M.; Maignan, M. Analysis and Modelling of Spatial Environmental Data; EPFL Press: Lausanne, Switzerland, 2004; p. 288. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics (Electronic Version); SAGE Publications, Inc.: New York, NY, USA, 2017; ISBN 9781526445766. [Google Scholar]
- Allen, D.M. The Relationship between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics 1974, 16, 125–127. [Google Scholar] [CrossRef]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Fürnkranz, J.; Chan, P.K.; Craw, S.; Sammut, C.; Uther, W.; Ratnaparkhi, A.; Jin, X.; Han, J.; Yang, Y.; Morik, K.; et al. Mean Absolute Error. Encycl. Mach. Learn. 2011, 652. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Li, W.E.I.; Chen, J.I.E.; Li, L.U.; Chen, H.U.A.; Liu, B.; Xu, C.Y.; Li, X. Evaluation and bias correction of S2S precipitation for hydrological extremes. J. Hydrometeorol. 2019, 20, 1887–1906. [Google Scholar] [CrossRef]
- Johnston, K.; Ver Hoef, J.M.; Krivoruchko, K.; Lucas, N. Using ArcGIS geostatistical analyst. Analysis 2001, 300, 300. [Google Scholar]
- Hernandez-Stefanoni, J.L.; Ponce-Hernandez, R. Mapping the spatial variability of plant diversity in a tropical forest: Comparison of spatial interpolation methods. Environ. Monit. Assess. 2006, 117, 307–334. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Johnson, L.A.; Gardiner, J.S. Forecasting and Time Series Analysis, 2nd ed.; McGraw-Hill: New York, NY, USA, 1990; ISBN 9780070428584. [Google Scholar]
- Pontius, R.G.; Thontteh, O.; Chen, H. Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 2007, 15, 111–142. [Google Scholar] [CrossRef]
- Berndt, C.; Haberlandt, U. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density. J. Hydrol. Reg. Stud. 2018, 15, 184–202. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Z.; Wang, L.; Huang, Y.; Wang, Y.; Li, L. Rainfall Spatial Estimations: A Review from Spatial Interpolation to Multi-Source Data Merging. Water 2019, 11, 579. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.D. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol. 2005, 308, 128–150. [Google Scholar] [CrossRef]
- Moral, F.J. Comparison of different geostatistical approaches to map climate variables: Application to precipitation. Int. J. Climatol. 2010, 30, 620–631. [Google Scholar] [CrossRef]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Rivas-Martinez, S. Clasificacìon Bioclimàtica de la tierra. Folia Bot. Madritensis 1996, 16, 1–32. [Google Scholar]
- Walter, H. Klimadiagramm Weltatlas; [s.n.]: [S.l.]; ConchBooks: Harxheim, Germany, 1980. [Google Scholar]
- Thornthwaite, C. The Water Balance; Drexel Institute of Technology Laboratory of Climatology: Centerton, NJ, USA, 1955. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
Station Name | X (WGS84 UTM33N) | Y (WGS84 UTM33N) | Elevation (m) | MAE AIDW | MAE IDW | RMSE AIDW | RMSE IDW | MRE AIDW | MRE IDW | a | b | c | d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Altamura | 630998.1 | 4520285.1 | 482 | 1.285 | 1.651 | 2.603 | 2.742 | 0.798 | 0.915 | 1 | 1 | 1 | 1 |
Andria | 608484.7 | 4564039.9 | 162 | 1.302 | 1.532 | 2.58 | 2.713 | 1.538 | 1.764 | 1 | 1 | 1 | 1 |
Bari Osservatorio | 657148.7 | 4553462.8 | 34 | 0.853 | 0.895 | 2.687 | 2.727 | 2.51 | 2.53 | 1 | 1 | 1 | 1 |
Bosco Umbra | 582616.4 | 4629940.4 | 798 | 40.472 | 49.962 | 57.167 | 69.01 | 0.544 | 0.604 | 1 | 1 | 1 | 1 |
Cagnano Varano | 563907.1 | 4630768.9 | 181 | 18.298 | 22.088 | 27.638 | 32.821 | 0.354 | 0.393 | 1 | 1 | 1 | 1 |
Canosa di Puglia | 589011.6 | 4564170.4 | 154 | 9.59 | 10.559 | 13.968 | 14.665 | 0.434 | 0.542 | 1 | 1 | 1 | 1 |
Castel del Monte | 607008.9 | 4548253.3 | 543 | 10.891 | 12.258 | 15.604 | 17.532 | 0.359 | 0.3487 | 1 | 1 | 0 | 0 |
Cerignola | 575810.8 | 4568397.3 | 134 | 9.524 | 9.799 | 14.136 | 14.134 | 0.361 | 0.415 | 1 | 0 | 1 | 0 |
Faeto | 513658.1 | 4574523.6 | 776 | 18.198 | 21.136 | 26.913 | 30.886 | 0.469 | 0.482 | 1 | 1 | 1 | 1 |
Foggia Osservatorio | 545323.2 | 4590048.3 | 82 | 6.592 | 18.213 | 9.92 | 22.736 | 0.994 | 0.242 | 1 | 1 | 0 | 0 |
Gallipoli | 755424.5 | 4438104.3 | 31 | 14.421 | 18.285 | 21.706 | 27.312 | 1.001 | 1.269 | 1 | 1 | 1 | 1 |
Lesina | 529318.2 | 4634539.7 | 13 | 15.609 | 20.296 | 22.272 | 27.745 | 0.58 | 0.815 | 1 | 1 | 1 | 1 |
Maglie | 780678.2 | 4446165.2 | 102 | 16.387 | 15.266 | 25.21 | 23.875 | 0.483 | 0.445 | 0 | 0 | 0 | 0 |
Mercadante | 643260.5 | 4527900.7 | 393 | 9.788 | 14.002 | 14.517 | 20.750 | 0.407 | 0.533 | 1 | 1 | 1 | 1 |
Minervino Murge | 591064.4 | 4547652 | 454 | 14.455 | 15.201 | 21.912 | 23.975 | 0.5238 | 0.456 | 1 | 1 | 0 | 0 |
Monte Sant’Angelo | 580020.1 | 4617529.6 | 817 | 31.072 | 23.303 | 44.037 | 37.777 | 0.888 | 0.494 | 0 | 0 | 0 | 0 |
Monteleone di Puglia | 521705.7 | 4556971.7 | 844 | 17.303 | 16.103 | 24.054 | 22.647 | 0.387 | 0.361 | 0 | 0 | 0 | 0 |
Ortanova | 559151.7 | 4575168.9 | 80 | 10.031 | 11.373 | 14.655 | 15.769 | 0.489 | 0.674 | 1 | 1 | 1 | 1 |
Ostuni | 717709.9 | 4511508.1 | 234 | 1.465 | 1.915 | 2.529 | 2.687 | 0.38 | 0.41 | 1 | 1 | 1 | 1 |
Otranto | 797186.8 | 4449554.4 | 29 | 19.485 | 20.424 | 32.041 | 33.768 | 0.697 | 0.747 | 1 | 1 | 1 | 1 |
Pietramontecorvino | 510754.6 | 4599088.4 | 225 | 21.552 | 20.281 | 32.161 | 30.353 | 0.375 | 0.46 | 0 | 0 | 1 | 0 |
Presicce | 779316.6 | 4421387.7 | 105 | 17.573 | 20.337 | 29.074 | 34.574 | 0.719 | 0.71 | 1 | 1 | 0 | 0 |
San Giovanni Rotondo | 558967 | 4617451.4 | 572 | 18.855 | 22.163 | 27.969 | 32.652 | 0.426 | 0.423 | 1 | 1 | 0 | 0 |
Sannicandro Garganico | 546701.7 | 4631844.5 | 236 | 20.781 | 23.665 | 32.693 | 37.232 | 0.415 | 0.466 | 1 | 1 | 1 | 1 |
Santa Maria di Leuca | 787239 | 4410792.4 | 26 | 18.084 | 19.071 | 27.272 | 28.871 | 0.886 | 1.07 | 1 | 1 | 1 | 1 |
Spinazzola | 592315 | 4535068.4 | 458 | 13.928 | 12.775 | 19.764 | 17.861 | 0.492 | 0.524 | 0 | 0 | 1 | 0 |
Taranto | 690795.7 | 4481728 | 27 | 9.584 | 15.934 | 14.442 | 21.804 | 0.549 | 0.984 | 1 | 1 | 1 | 1 |
Vieste | 597511.9 | 4637115.5 | 53 | 15.835 | 16.576 | 22.974 | 23.581 | 0.701 | 0.76 | 1 | 1 | 1 | 1 |
TOT | 23 | 22 | 20 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massarelli, C.; Campanale, C.; Uricchio, V.F. Custom Methodology to Improve Geospatial Interpolation at Regional Scale with Open-Source Software. Knowledge 2022, 2, 88-102. https://doi.org/10.3390/knowledge2010005
Massarelli C, Campanale C, Uricchio VF. Custom Methodology to Improve Geospatial Interpolation at Regional Scale with Open-Source Software. Knowledge. 2022; 2(1):88-102. https://doi.org/10.3390/knowledge2010005
Chicago/Turabian StyleMassarelli, Carmine, Claudia Campanale, and Vito Felice Uricchio. 2022. "Custom Methodology to Improve Geospatial Interpolation at Regional Scale with Open-Source Software" Knowledge 2, no. 1: 88-102. https://doi.org/10.3390/knowledge2010005
APA StyleMassarelli, C., Campanale, C., & Uricchio, V. F. (2022). Custom Methodology to Improve Geospatial Interpolation at Regional Scale with Open-Source Software. Knowledge, 2(1), 88-102. https://doi.org/10.3390/knowledge2010005