Nitrogen and Carbon Removal Capacity by Farmed Kelp Alaria marginata and Saccharina latissima Varies by Species
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubravko, J.; Rabalais, N.N.; Turner, R.E.; Dortch, Q. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuar. Coast 1995, 40, 339–356. [Google Scholar] [CrossRef]
- Paerl, H.W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Coelho, S.M.; Rijstenbil, J.W.; Brown, M.T. Impacts of anthropogenic stress on the early development stages of seaweeds. J. Aquatic Ecosyst. Stress Recover. 2000, 7, 317–333. [Google Scholar] [CrossRef]
- Hoagland, P.; Anderson, D.M.; Kaoru, Y.; White, A.W. The economic effects of harmful algal blooms in the United States: Estimates, assessment issues, and information needs. Estuaries 2002, 25, 819–837. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ. Sci. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Worm, B.; Lotze, H.K. Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnol. Oceanogr. 2006, 51, 569–579. [Google Scholar] [CrossRef][Green Version]
- Rabalais, N.N.; Turner, R.E.; Diaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES Mar. Sci. Symp. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Copeland, C. Clean Water Act: A Summary of the Law; Congressional Research Service, Library of Congress: Washington, DC, USA, 1999. [Google Scholar]
- Parker, C.A.; O’Reilly, J.E. Oxygen depletion in Long Island Sound: A historical perspective. Estuaries 1991, 14, 248–264. [Google Scholar] [CrossRef]
- Trinh, R.C.; Fichot, C.G.; Gierach, M.M.; Holt, B.; Malakar, N.K.; Hulley, G.; Smith, J. Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge on Coastal Water Quality. Front. Mar. Sci. 2017, 4, 329. [Google Scholar] [CrossRef][Green Version]
- Alaska Department of Environmental Conservation. Impaired Waterbody Listing. Available online: https://dec.alaska.gov/water/water-quality/impaired-waters/ (accessed on 2 December 2021).
- Grebe, G.S.; Byron, C.J.; Brady, D.C.; Geisser, A.H.; Brennan, K.D. The nitrogen bioextraction potential of nearshore Saccharina latissima cultivation and harvest in the Western Gulf of Maine. J. Appl. Phycol. 2021, 33, 1741–1757. [Google Scholar] [CrossRef]
- Park, J.S.; Shin, S.K.; Wu, H.; Yarish, C.; Yoo, H.I.; Kim, J.K. Evaluation of nutrient bioextraction by seaweed and shellfish aquaculture in Korea. J. World Aquac. Soc. 2021, 52, 1118–1134. [Google Scholar] [CrossRef]
- Rose, J.M.; Bricker, S.B.; Deonarine, S.; Ferreira, J.G.; Getchis, T.; Grant, J.; Kim, J.K.; Krumholz, J.S.; Kraemer, G.P.; Stephenson, K.; et al. Nutrient bioextraction. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2015; pp. 1–33. [Google Scholar] [CrossRef]
- Reid, G.K.; Chopin, T.; Robinson, S.M.C.; Azevedo, P.; Quinton, M.; Belyea, E. Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, Salmo salar, in Integrated Multi-Trophic Aquaculture systems. Aquaculture 2013, 408–409, 34–46. [Google Scholar] [CrossRef]
- Chung, I.K.; Kang, Y.H.; Yarish, C.; George, P.K.; Lee, J.-A. Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent. Algae 2002, 17, 187–194. [Google Scholar] [CrossRef][Green Version]
- Duarte, C.M.; Wu, J.; Xiao, X.; Bruhn, A.; Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 2017, 4, 100. [Google Scholar] [CrossRef][Green Version]
- Chung, I.K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macro- algae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 2011, 23, 877–886. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Duarte, C.M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 2016, 9, 737–742. [Google Scholar] [CrossRef]
- Ortega, A.; Geraldi, N.R.; Alam, I.; Kamau, A.A.; Acinas, S.G.; Logares, R.; Gasol, J.M.; Massana, R.; Krause-Jensen, D.; Duarte, C.M. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 2019, 12, 748–754. [Google Scholar] [CrossRef][Green Version]
- Traiger, S.B.; Cohn, B.; Panos, D.; Daly, M.; Hirsh, H.K.; Martone, M.; Gutierrez, I.; Mucciarone, D.A.; Takeshita, Y.; Monismith, S.G.; et al. Limited biogeochemical modification of surface waters by kelp forest canopies: Influence of kelp metabolism and site-specific hydrodynamics. Limnol. Oceanogr. 2022, 67, 392–403. [Google Scholar] [CrossRef]
- Gallagher, J.B.; Shelamoff, V.; Layton, C. Missing the forest for the trees: Do seaweed ecosystems mitigate atmospheric CO2 emissions? bioRxiv 2021. [Google Scholar] [CrossRef]
- Umanzor, S.; Good, M.; Bobrycki, T.; Kim, J.K.; Yarish, C. Building Community Capacity in the Determination of Nutrient Removal through Kelp Farming. World Aquaculture Magazine. 2022. Available online: https://www.was.org/Magazine/Vol/53/3# (accessed on 15 October 2022).
- Kim, J.K.; Kraemer, G.P.; Yarish, C. Sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient bioextraction associated with biomass production. Mar. Ecol. Prog. Ser. 2015, 531, 155–166. [Google Scholar] [CrossRef]
- Fei, X. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 2004, 512, 145–151. [Google Scholar] [CrossRef]
- Grebe, G.S.; Byron, C.J.; Gelais, A.S.; Kotowicz, D.M.; Olson, T.K. An ecosystem approach to kelp aquaculture in the Americas and Europe. Aquac. Rep. 2019, 15, 100215. [Google Scholar] [CrossRef]
- Xiao, X.; Agustí, S.; Yu, Y.; Huang, Y.; Chen, W.; Hu, J.; Li, C.; Li, K.; Wei, F.; Lu, Y.; et al. Seaweed farms provide refugia from ocean acidification. Sci. Total Environ. 2021, 776, 145192. [Google Scholar] [CrossRef] [PubMed]
- Augyte, S.; Yarish, C.; Redmond, S.; Kim, J.K. Cultivation of a morphologically distinct strain of the sugar kelp, Saccharina latissima forma angustissima, from coastal Maine, USA, with implications for ecosystem services. J. Appl. Phycol. 2017, 29, 1967–1976. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Chapman, A.R.O.; Craigie, J.S. Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 1977, 40, 197–205. [Google Scholar] [CrossRef]
- Wheeler, P.A.; North, W.J. Nitrogen supply, tissue composition and frond growth rates for Macrocystis pyrifera off the coast of southern California. Mar. Biol. 1981, 64, 59–69. [Google Scholar] [CrossRef]
- Zimmerman, R.C.; Kremer, J.N. In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera: Response to temporal changes in ambient nutrient availability. Mar. Ecol. Prog. Ser. 1986, 27, 277–285. [Google Scholar] [CrossRef]
- Hanisak, M.D. The nitrogen relationships of marine macroalgae. In Nitrogen in the Marine Environment; Carpenter, E.J., Capone, E.D., Eds.; Academic Press: New York, NY, USA, 1983; pp. 699–730. [Google Scholar]
- Stephens, T.A.; Hepburn, C.D. Mass-transfer gradients across kelp beds influence Macrocystis pyrifera growth over small spatial scales. Mar. Ecol. Prog. Ser. 2014, 515, 97–109. [Google Scholar] [CrossRef]
- Stephens, T.A.; Hepburn, C.D. A kelp with integrity: Macrocystis pyrifera prioritises tissue maintenance in response to nitrogen fertilisation. Oecologia 2016, 182, 71–84. [Google Scholar] [CrossRef]
- Sato, Y.; Nishihara, G.N.; Tanaka, A.; Belleza, D.F.; Kawate, A.; Inoue, Y.; Hinode, K.; Matsuda, Y.; Tanimae, S.; Tozaki, K.; et al. Variability in the net ecosystem productivity (NEP) of seaweed farms. Front. Mar. Sci. 2022, 9, 763. [Google Scholar] [CrossRef]
Doyle Bay | Nitrate (µM) | Nitrite (µM) | Phosphate (µM) | Silicate (µM) | Ammonium (µM) |
---|---|---|---|---|---|
March | 5.66 ± 1.73 | 0.11 ± 0.02 | 0.70 ± 0.10 | 12.09 ± 1.43 | 0.56 ± 0.04 |
April | 2.25 ± 0.08 | 0.09 ± 0.005 | 0.40 ± 0.02 | 1.39 ± 0.16 | 0.61 ± 0.08 |
May | 0.64 ± 0.03 | 0.01 ± 0.005 | 0.09 ± 0.04 | 0.60 ± 0.04 | 0.49 ± 0.05 |
Port Gravina | |||||
May | 0.21 ± 0.03 | 0.01 ± 0.00 | 0.07 ± 0.01 | 0.40 ± 0.30 | 0.30 ± 0.04 |
April | ||||
---|---|---|---|---|
DF | MS | F-value | p-value | |
% nitrogenSpecies | 1 | 24.861 | 370.7 | <0.001 |
residuals | 28 | 0.067 | ||
% carbonSpecies | 1 | 194.06 | 39.33 | <0.001 |
residuals | 28 | 4.93 | ||
C:NSpecies | 1 | 2786.1 | 156.8 | <0.001 |
residuals | 28 | 17.8 | ||
May | ||||
DF | MS | F-value | p-value | |
% nitrogenSpecies | 1 | 0.907 | 17.1 | <0.001 |
residuals | 27 | 0.053 | ||
% carbonSpecies | 1 | 576.8 | 94.47 | <0.001 |
residuals | 27 | 167.9 | ||
C:NSpecies | 1 | 0.06 | 0.001 | 0.972 |
residuals | 27 | 44.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umanzor, S.; Stephens, T. Nitrogen and Carbon Removal Capacity by Farmed Kelp Alaria marginata and Saccharina latissima Varies by Species. Aquac. J. 2023, 3, 1-6. https://doi.org/10.3390/aquacj3010001
Umanzor S, Stephens T. Nitrogen and Carbon Removal Capacity by Farmed Kelp Alaria marginata and Saccharina latissima Varies by Species. Aquaculture Journal. 2023; 3(1):1-6. https://doi.org/10.3390/aquacj3010001
Chicago/Turabian StyleUmanzor, Schery, and Tiffany Stephens. 2023. "Nitrogen and Carbon Removal Capacity by Farmed Kelp Alaria marginata and Saccharina latissima Varies by Species" Aquaculture Journal 3, no. 1: 1-6. https://doi.org/10.3390/aquacj3010001