Whole Black Soldier Fly Larvae (Hermetia illucens) as Dietary Replacement of Extruded Feed for Tambaqui (Colossoma macropomum) Juveniles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feeding Trial
2.2. Water Quality
2.3. Growth Performance
- Daily weight gain (g) = average weight gain ÷ period in days;
- Daily Feed Intake (g) = total weight of feed consumed per fish/120 days;
- Specific growth rate (%) = (ln (final weight)- ln (initial weight))/days;
- Feed conversion rate = feed intake ÷ weight gain;
- Daily protein intake = (Total Feed Intake × protein content (feed and/or larvae))/120 days;
- Daily energy intake = (Total Feed Intake × energy content (feed and/or larvae))/120 days.
2.4. Hematological Analysis
2.5. Body Analysis and Somatic Indices
- Viserosomatic index = 100 × (visceras weight/body weight);
- Hepatosomatic index = 100 × (liver weight/body weight);
- Visceral fat index = 100 × (visceral fat weight/body weight);
- Fillet yield = 100 × (Fillet weight/body weight);
- Head yield = 100 × (Head weight/body weight);
- Skin yield = 100 × (Skin weight/body weight).
2.6. Sensorial Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, R.W.; Kaushik, S.J.; Mai, K.; Bai, S. Fish nutrition—History and perspectives. In Fish Nutrition, 4th ed.; Hardy, R.W., Kaushik, S.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 2–14. [Google Scholar]
- Wang, Y.S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The introduction of insect meal into fish diet: The first economic analysis on European sea bass farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Hua, K. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 2021, 530, 735732. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422–423, 193–201. [Google Scholar] [CrossRef]
- Bruni, L.; Belghit, I.; Lock, E.J.; Secci, G.; Taiti, C.; Parisi, G. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric. 2020, 100, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Muin, H.; Taufek, N.M.; Kamarudin, M.S.; Razak, S.A. Growth performance, feed utilization and body composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed with different levels of black soldier fly, Hermetia illucens (Linnaeus, 1758) maggot meal diet. Iran. J. Fish. Sci. 2017, 16, 567–577. [Google Scholar]
- Kenis, M.; Bouwassi, B.; Boafo, H.; Emilie Devic Richou, H.; Gabriel, K.; N’Golopé, K.; Maciel-Vergara, G.; Nacambo, S.; Pomalegni Sètchémè Charles, B.; Roffeis, M.; et al. Edible Insects in Sustainable Food Systems. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–479. [Google Scholar] [CrossRef]
- He, Y.; Liu, X.; Zhang, N.; Wang, S.; Wang, A.; Zuo, R.; Jiang, Y. Replacement of Commercial Feed with Fresh Black Soldier Fly (Hermetia illucens) Larvae in Pacific White Shrimp (Litopenaeus vannamei). Aquac. Nutr. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Hilsdorf, A.W.S.; Hallerman, E.; Valladão, G.M.R.; Zaminhan-Hassemer, M.; Hashimoto, D.T.; Dairiki, J.K.; Takahashi, L.S.; Albergaria, F.C.; Gomes, M.E.D.S.; Venturieri, R.L.L.; et al. The farming and husbandry of Colossoma macropomum: From Amazonian waters to sustainable production. Rev. Aquac. 2021, 14, 993–1027. [Google Scholar] [CrossRef]
- Van Senten, J.; Engle, C.R.; Smith, M.A. Effects of COVID-19 on US aquaculture farms. Appl. Econ. Perspect. Policy 2021, 43, 355–367. [Google Scholar] [CrossRef]
- USDA. USDA Announces Plans for $250 Million Investment to Support Innovative American-Made Fertilizer to Give US Farmers More Choices in the Marketplace. Available online: https://www.usda.gov/media/press-releases/2022/03/11/usda-announces-plans-250-million-investment-support-innovative (accessed on 23 August 2022).
- Chia, S.Y.; Tanga, C.M.; van Loon, J.J.; Dicke, M. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Curr. Opin. Environ. Sustain. 2019, 41, 23–30. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International. In Association of Official Analysis Chemists International; AOAC: Rockville, MD, USA, 2005. [Google Scholar]
- NRC. Nutrient Requirements of Fish and Shrimp. In Nutrient Requirements of Fish and Shrimp; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Goldenfarb, P.B.; Bowyer, F.P.; Hall, E.; Brosious, E. Reproducibility in the Hematology Laboratory: The Microhematocrit Determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Blaxhall, P.C.; Daisley, K.W. Routine haematological methods for use with fish blood. J. Fish Biol. 1973, 5, 771–781. [Google Scholar] [CrossRef]
- Natt, M.P.; Herrick, C.A. A New Blood Diluent for Counting the Erythrocytes and Leucocytes of the Chicken. Poult. Sci. 1952, 31, 735–738. [Google Scholar] [CrossRef]
- Wintrobe, M.M. Anemia: Classification and treatment on the basis of differences in the average volume and hemoglobin content of the red corpuscles. Arch. Intern. Med. 1934, 213, 256–280. [Google Scholar] [CrossRef]
- Wichchukit, S.; O’Mahony, M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J. Sci. Food Agric. 2015, 95, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Persson Osowski, C.; Osowski, D.; Johansson, K.; Sundin, N.; Malefors, C.; Eriksson, M. From Old Habits to New Routines—A Case Study of Food Waste Generation and Reduction in Four Swedish Schools. Resources 2022, 11, 5. [Google Scholar] [CrossRef]
- Shurson, G.C. “What a waste”—can we improve sustainability of food animal production systems by recycling food waste streams into animal feed in an era of health, climate, and economic crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Nasser, N.; Babikian, J.; Hatem, M.; Saoud, I.; Abiad, M. Evaluation of post-consumer food waste as partial replacement of commercial feed in marbled rabbitfish, Siganus rivulatus aquaculture. Int. J. Environ. Sci. Technol. 2018, 16, 4059–4068. [Google Scholar] [CrossRef]
- Hussain, A.S.; Peixoto RS, S.; Davis, D.A.; Nutritional Contribution of Fermented Soybean Meal as a Feed Replacement for the Pacific White Shrimp (Penaeus vannamei). Aquaculture America 2021 Proceedings. 2021. Available online: https://www.was.org/Meeting/Program/PaperDetail/157713 (accessed on 23 August 2022).
- Bicudo, A.J.A.; Sado, R.Y.; Cyrino, J.E.P. Growth performance and body composition of pacu Piaractus mesopotamicus (Holmberg 1887) in response to dietary protein and energy levels. Aquac. Nutr. 2010, 16, 213–222. [Google Scholar] [CrossRef]
- Gonçalves, L.U.; Parisi, G.; Bonelli, A.; Sussel, F.R.; Viegas EM, M. The fatty acid compositions of total, neutral and polar lipids in wild and farmed lambari (Astyanax altiparanae) (Garutti & Britski, 2000) broodstock. Aquac. Res. 2014, 45, 195–203. [Google Scholar] [CrossRef]
- De Almeida, L.C.; Avilez, I.M.; Honorato, C.A.; Hori, T.S.F.; Moraes, G. Growth and metabolic responses of tambaqui (Colossoma macropomum) fed different levels of protein and lipid. Aquac. Nutr. 2011, 17, e253–e262. [Google Scholar] [CrossRef]
- Guimarães, I.G.; Martins, G.P. Nutritional requirement of two Amazonian aquacultured fish species, Colossoma macropomum (Cuvier, 1816) and Piaractus brachypomus (Cuvier, 1818): A mini review. J. Appl. Ichthyol. 2015, 31, 57–66. [Google Scholar] [CrossRef]
- Polakof, S.; Mommsen, T.P.; Soengas, J.L. Glucosensing and glucose homeostasis: From fish to mammals. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 160, 123–149. [Google Scholar] [CrossRef] [PubMed]
- Bibiano Melo, J.F.; Lundstedt, L.M.; Metón, I.; Baanante, I.V.; Moraes, G. Effects of dietary levels of protein on nitrogenous metabolism of Rhamdia quelen (Teleostei: Pimelodidae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 145, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.C.; da Cruz, M.G.; Lima, T.B.C.; Serra, B.N.V.; Chaves, F.C.M.; Chagas, E.C.; Ventura, A.S.; Jerônimo, G.T. Antiparasitic activity of Mentha piperita (Lamiaceae) essential oil against Piscinoodinium pillulare and its physiological effects on Colossoma macropomum (Cuvier, 1818). Aquaculture 2019, 512, 734343. [Google Scholar] [CrossRef]
- Gonzales, A.; Yoshioka, E.T.O.; Mathews, P.D.; Mertins, O.; Chaves, F.C.M.; Videira, M.; Tavares-Dias, M. Anthelminthic efficacy of Cymbopogon citratus essential oil (Poaceae) against monogenean parasites of Colossoma macropomum (Serrasalmidae), and blood and histopathological effects. Aquaculture 2020, 528, 735500. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Gasco, L.; Finke, M.; van Huis, A. Can diets containing insects promote animal health? J. Insects Food Feed 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Castelo, A.S.; Da Silva, B.M.P.; Cunha AD, S.; Proietti Júnior, A.A.; Oba-Yoshioka, E.T. Hematological responses of tambaqui Colossoma macropomum (Serrassalmidae) fed with diets supplemented with essential oil from Mentha piperita (Lamiaceae) and challenged with Aeromonas hydrophila. Acta Amaz. 2016, 46, 99–106. [Google Scholar] [CrossRef]
- Sandre, L.; Buzollo, H.; Neira, L.; Nascimento, T.; Jomori, R.; Carneiro, D. Growth and Energy Metabolism of Tambaqui (Colossoma Macropomum) Fed Diets with Different Levels of Carbohydrates and Lipids. Fish. Aquac. J. 2017, 08, 1–7. [Google Scholar] [CrossRef]
- Geay, F.; Ferraresso, S.; Zambonino-Infante, J.L.; Bargelloni, L.; Quentel, C.; Vandeputte, M.; Kaushik, S.; Cahu, C.L.; Mazurais, D. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genom. 2011, 12, 522. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Jin, J.; Zou, T.; Han, D.; Liu, H.; Zhu, X.; Yang, Y.; Xie, S. Growth, feed utilization and metabolic responses of three gibel carp (Carassius gibelio) strains to fishmeal and plant protein-based diets. Aquac. Nutr. 2019, 25, 319–332. [Google Scholar] [CrossRef]
- Yun, B.; Mai, K.; Zhang, W.; Xu, W. Effects of dietary cholesterol on growth performance, feed intake and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 2011, 319, 105–110. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.J.; Mai KSen Tian, L.X.; Liu, D.H.; Tan, X.Y.; Lin, H.Z. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages. Aquac. Int. 2005, 13, 257–269. [Google Scholar] [CrossRef]
- Xie, D.; Yang, L.; Yu, R.; Chen, F.; Lu, R.; Qin, C.; Nie, G. Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreochromis niloticus. Aquaculture 2017, 479, 696–703. [Google Scholar] [CrossRef]
- Borgogno, M.; Dinnella, C.; Iaconisi, V.; Fusi, R.; Scarpaleggia, C.; Schiavone, A.; Monteleone, E.; Gasco, L.; Parisi, G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: Effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 2017, 97, 3402–3411. [Google Scholar] [CrossRef]
Proximate Composition and Energy | BSFL | CF |
---|---|---|
Dry Matter (g/kg) | 345.5 | 922.0 |
Crude protein (g/kg) | 415.7 | 332.0 |
Lipid (g/kg) | 238.5 | 39.0 |
Crude fiber (g/kg) | 19.1 | 60.0 |
Ash (g/kg) | 109.0 | 80.0 |
Gross energy (MJ/kg) * | 23.7 | 17.3 |
Variables | BSFL | BSFL:CF | CF | p-Value |
---|---|---|---|---|
Body weight (g) 36 days | 164.92 ± 7.74 | 179.11 ± 5.13 | 186.18 ± 11.01 | 0.237 |
Body weight (g) 68 days | 213.65 ± 9.18 b | 239.33 ± 5.89 ab | 263.33 ± 8.66 a | 0.006 |
Body weight (g) 98 days | 247.30 ± 7.85 b | 306.85 ± 8.28 a | 320.49 ± 14.24 a | 0.002 |
Final body weight (g) | 285.92 ± 11.69 b | 337.96 ± 11.04 ab | 364.67 ± 16.67 a | 0.007 |
Daily weight gain (g) | 1.40 ± 0.10 b | 1.83 ± 0.09 ab | 2.04 ± 0.14 a | 0.007 |
Specific growth rate (%) | 0.74 ± 0.03 b | 0.88 ± 0.03 a | 0.94 ± 0.04 a | 0.006 |
Daily feed intake (g, dry matter) | 1.80 ± 0.04 c | 2.82 ± 0.10 b | 3.88 ± 0.09 a | 0.000 |
Feed conversion rate | 1.31 ± 0.08 b | 1.55 ± 0.07 ab | 1.92 ± 0.12 a | 0.004 |
Daily protein intake (g/day) | 0.75 ± 0.04 c | 1.17 ± 0.10 b | 1.61 ± 0.09 a | 0.001 |
Daily energy intake (MJ/day) | 0.04 ± 0.00 c | 0.05 ± 0.00 b | 0.07 ± 0.00 a | 0.001 |
Variables | BSFL | BSFL:CF | CF | p-Value |
---|---|---|---|---|
Viscerosomatic index (%) | 7.01 ± 0.15 a | 6.56 ± 0.16 ab | 6.20 ± 0.20 b | 0.025 |
Hepatosomatic index (%) | 1.40 ± 0.05 | 1.50 ± 0.07 | 1.61 ± 0.09 | 0.161 |
Visceral fat index (%) | 2.79 ± 0.33 | 2.36 ± 0.28 | 2.19 ± 0.12 | 0.282 |
Fillet (%) | 28.04 ± 0.58 | 28.49 ± 0.37 | 28.09 ± 0.25 | 0.719 |
Head (%) | 19.63 ± 0.85 | 19.78 ± 0.97 | 18.44 ± 0.41 | 0.539 |
Skin (%) | 5.47 ± 0.28 | 5.58 ± 0.22 | 5.51 ± 0.34 | 0.967 |
Parameter | BSFL | BSFL:CF | CF | p-Value |
---|---|---|---|---|
Hematocrit (%) * | 33.1 ± 4.1 | 38.8 ± 0.7 | 37.2 ± 2.3 | 0.44 |
Mean corpuscular volume (fL) | 145.6 ± 16.3 | 167.7 ± 10.1 | 193.5 ± 19.0 | 0.15 |
Red blood cells (106/µL) | 2.34 ± 0.18 | 2.38 ± 0.14 | 2.09 ± 0.26 | 0.58 |
Plasma glucose (mg/dL) | 138.9 ± 13.7 | 112.9 ± 11.7 | 104.7 ± 12.3 | 0.19 |
Plasma triglycerides (mg/dL) | 312.1 ± 9.6 a | 295.1 ± 12.2 a | 200.2 ± 15.0 b | 0.001 |
Total plasma protein (g/dL) * | 4.09 ± 0.06 | 4.15 ± 0.57 | 3.87 ± 0.22 | 0.38 |
Plasma cholesterol (mg/dL) | 120.6 ± 6.1 a | 119.1 ± 17.3 a | 83.4 ± 3.1 b | 0.001 |
Atributes | BSFL | BSFL:CF | CF | p-Value |
---|---|---|---|---|
Color | 7.29 ± 0.18 | 7.47 ± 0.22 | 6.78 ± 0.26 | 0.180 |
Texture | 7.80 ± 0.21 | 7.98 ± 0.15 | 7.60 ± 0.17 | 0.072 |
Flavor | 7.58 ± 0.18 ab | 7.73 ± 0.19 a | 7.00 ± 0.20 b | 0.003 |
Odor | 7.04 ± 0.22 ab | 7.33 ± 0.23 a | 6.65 ± 0.27 b | 0.014 |
Apparence | 7.16 ± 0.25 ab | 7.60 ± 0.23 a | 6.60 ± 0.29 b | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordoñez, B.M.; Santana, T.M.; Carneiro, D.P.; dos Santos, D.K.M.; Parra, G.A.P.; Moreno, L.C.C.; Teixeira Filho, N.P.; Aguilar, F.A.A.; Yamamoto, F.Y.; Gonçalves, L.U. Whole Black Soldier Fly Larvae (Hermetia illucens) as Dietary Replacement of Extruded Feed for Tambaqui (Colossoma macropomum) Juveniles. Aquac. J. 2022, 2, 246-256. https://doi.org/10.3390/aquacj2040014
Ordoñez BM, Santana TM, Carneiro DP, dos Santos DKM, Parra GAP, Moreno LCC, Teixeira Filho NP, Aguilar FAA, Yamamoto FY, Gonçalves LU. Whole Black Soldier Fly Larvae (Hermetia illucens) as Dietary Replacement of Extruded Feed for Tambaqui (Colossoma macropomum) Juveniles. Aquaculture Journal. 2022; 2(4):246-256. https://doi.org/10.3390/aquacj2040014
Chicago/Turabian StyleOrdoñez, Betselene M., Thiago M. Santana, Davison P. Carneiro, Driely K. M. dos Santos, Gustavo A. P. Parra, Luis C. C. Moreno, Nelson P. Teixeira Filho, Fredy A. A. Aguilar, Fernando Y. Yamamoto, and Ligia U. Gonçalves. 2022. "Whole Black Soldier Fly Larvae (Hermetia illucens) as Dietary Replacement of Extruded Feed for Tambaqui (Colossoma macropomum) Juveniles" Aquaculture Journal 2, no. 4: 246-256. https://doi.org/10.3390/aquacj2040014
APA StyleOrdoñez, B. M., Santana, T. M., Carneiro, D. P., dos Santos, D. K. M., Parra, G. A. P., Moreno, L. C. C., Teixeira Filho, N. P., Aguilar, F. A. A., Yamamoto, F. Y., & Gonçalves, L. U. (2022). Whole Black Soldier Fly Larvae (Hermetia illucens) as Dietary Replacement of Extruded Feed for Tambaqui (Colossoma macropomum) Juveniles. Aquaculture Journal, 2(4), 246-256. https://doi.org/10.3390/aquacj2040014