An Inconvenient Truth: Transdermal Buffering Lotions Appear to Offer No Significant Performance Improvement
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Participant Characteristics
2.2. Study Design
2.3. Trial Details
2.4. Trial Training Logs
- Supplement application and Trial start times.
- Trial designation (FAM, X, Y, or Z).
- Supplement rating and comments, and belief it was a supplement or PLAC.
- Environmental temperature as well as pre- and post-trial body weight.
- The Zwift virtual bike and wheels used (kept unchanged across trials as they affect game speeds).
- RPE (1–10) for each lap and overall trial RPE [49].
- The volume of fluids consumed and details on carbohydrate intake.
2.5. Supplmenent and Placebo Lotions
2.6. Performance Measures
2.7. Statistical Analyses
3. Results
3.1. Baseline Participant Physical, Performance, and Training Characteristics
3.2. Overall Trial Characteristics and Outcomes
3.2.1. Trial Characteristics
3.2.2. Trial Average Power (Laps 2–4)
3.2.3. Trial Average HR and RPE (Laps 2–4)
3.3. Hill Climb Segment Charactersitics and Outcomes
Hill Climb Segment Average Power (Laps 2–4)
3.4. Sprint Segment Charactersitics and Outcomes
Sprint Segment Average Power (Laps 2–4)
3.5. Time Trial Charactersitics and Outcomes
3.5.1. Time Trial Average Power (Lap 5)
3.5.2. Time Trial Average HR and RPE (Lap 5)
3.6. Placebo Effects
4. Discussion
4.1. Trial Data
4.1.1. Laps 2–4 Repeated Efforts and Endurance
4.1.2. Durability of Time Trial Performance
4.2. Performance Replication and Perceived Effort
4.3. Placebo Effects and Menthol
4.4. Does Transdermal Delivery Make Sense for Buffers?
4.5. Assimilation of Present Finding with Prior Transdermal Research
4.6. Novelty and Limitations
4.7. Applications and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BA | Beta-alanine |
BC | Bicarbonate |
END | Endurance trials ≥ 90 min |
FAM | Familiarization trial |
FTP | Functional threshold power equal 60 min maximal power |
HI | High-intensity intervals |
HR | Heart Rate |
MMP | Mean maximal power |
MMP20 | Mean maximal power for 20 min |
MMP30s | Mean maximal power for 30 s |
MMP60 | Mean maximal power for 60 min |
MR | Mixed reality |
OBC | Oral bicarbonate |
PLAC | Placebo |
RCT | Randomized controlled trial |
RPE | Rating of perceived exertion |
RS | Repeated sprint |
S | Sprint |
TBC | Transdermal bicarbonate |
TC | Transdermal carnosine |
References
- Grand View Research. Grand View Research Sports Nutrition Market Size, Share & Trends Analysis Report by Product Type (Sports Supplements, Sports Drinks), by Formulation, by Consumer Group, by Sales Channel, by Region, and Segment Forecasts, 2024–2030; Grand View Research: San Francisco, CA, USA, 2023; p. 140. [Google Scholar]
- Loraine, K. Supplement Regulation for Sports Nutrition Supplements. J. Leg. Med. 2018, 38, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Paton, C.D.; Hopkins, W.G. Variation in Performance of Elite Cyclists from Race to Race. Eur. J. Sport Sci. 2006, 6, 25–31. [Google Scholar] [CrossRef]
- Chase, J.G.; Moeller, K.; Shaw, G.M.; Schranz, C.; Chiew, Y.S.; Desaive, T. When the Value of Gold Is Zero. BMC Res. Notes 2014, 7, 404. [Google Scholar] [CrossRef]
- Ferguson, H.A.; Harnish, C.; Chase, J.G. Using Field Based Data to Model Sprint Track Cycling Performance. Sports Med.-Open 2021, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Morais, J.E.; Bragada, J.A.; Magalhães, P.M.; Marinho, D.A. The Accuracy and Reliability of the Power Measurements of the TACX Neo 2T Smart Trainer and Its Agreement against the Garmin Vector 3 Pedals. J. Funct. Morphol. Kinesiol. 2024, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Zadow, E.K.; Fell, J.W.; Kitic, C.M. The Reliability of a Laboratory-Based 4 Km Cycle Time Trial on a Wahoo KICKR Power Trainer. J. Sci. Cycl. 2016, 5, 23–27. [Google Scholar]
- Hoon, M.W.; Michael, S.W.; Patton, R.L.; Chapman, P.G.; Areta, J.L. A Comparison of the Accuracy and Reliability of the Wahoo KICKR and SRM Power Meter. J. Sci. Cycl. 2016, 5, 11–15. [Google Scholar]
- Reed, J.; Dunn, C.; Beames, S.; Stonehouse, P. E ‘Ride on!’: The Zwift Platform as a Space for Virtual Leisure. Leis. Stud. 2023, 42, 188–202. [Google Scholar] [CrossRef]
- Devine, A.; Devine, F.; Burns, A. An Examination of the Virtual Event Experience of Cyclists Competing on Zwift. Event Manag. 2024, 28, 151–167. [Google Scholar] [CrossRef]
- Westmattelmann, D.; Stoffers, B.; Sprenger, M.; Grotenhermen, J.-G.; Schewe, G. The Performance-Result Gap in Mixed-Reality Cycling–Evidence from the Virtual Tour de France 2020 on Zwift. Front. Physiol. 2022, 13, 868902. [Google Scholar] [CrossRef]
- McIlroy, B.; Passfield, L.; Holmberg, H.-C.; Sperlich, B. Virtual Training of Endurance Cycling–a Summary of Strengths, Weaknesses, Opportunities and Threats. Front. Sports Act. Living 2021, 3, 631101. [Google Scholar] [CrossRef]
- Joyner, M.J.; Coyle, E.F. Endurance Exercise Performance: The Physiology of Champions: Factors That Make Champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Bovim, I.M.; Whitfield, J. Contemporary Nutrition Interventions to Optimize Performance in Middle-Distance Runners. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Barsumyan, A.; Soost, C.; Burchard, R. Enhanced Durability Predicts Success in Amateur Road Cycling: Evidence of Power Output Declines. Front. Sports Act. Living 2025, 7, 1530162. [Google Scholar] [CrossRef]
- Jones, A.M. The Fourth Dimension: Physiological Resilience as an Independent Determinant of Endurance Exercise Performance. J. Physiol. 2024, 602, 4113–4128. [Google Scholar] [CrossRef] [PubMed]
- Maunder, E.; Seiler, S.; Mildenhall, M.J.; Kilding, A.E.; Plews, D.J. The Importance of ‘Durability’ in the Physiological Profiling of Endurance Athletes. Sports Med. 2021, 51, 1619–1628. [Google Scholar] [CrossRef]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L. International Society of Sports Nutrition Position Stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef]
- Harris, R.C.; Sale, C. Beta-Alanine Supplementation in High-Intensity Exercise. Acute Top. Sport Nutr. 2012, 59, 1–17. [Google Scholar]
- Carr, A.J.; Hopkins, W.G.; Gore, C.J. Effects of Acute Alkalosis and Acidosis on Performance: A Meta-Analysis. Sports Med. 2011, 41, 801–814. [Google Scholar] [CrossRef]
- Peart, D.J.; Siegler, J.C.; Vince, R.V. Practical Recommendations for Coaches and Athletes: A Meta-Analysis of Sodium Bicarbonate Use for Athletic Performance. J. Strength Cond. Res. 2012, 26, 1975–1983. [Google Scholar] [CrossRef]
- Saunders, B.; Sunderland, C.; Harris, R.C.; Sale, C. β-Alanine Supplementation Improves YoYo Intermittent Recovery Test Performance. J. Int. Soc. Sports Nutr. 2012, 9, 39. [Google Scholar] [CrossRef]
- De Oliveira, L.F.; Dolan, E.; Swinton, P.A.; Durkalec-Michalski, K.; Artioli, G.G.; McNaughton, L.R.; Saunders, B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 505–526. [Google Scholar] [CrossRef]
- Saunders, B.; De Oliveira, L.F.; Dolan, E.; Durkalec-Michalski, K.; McNaughton, L.; Artioli, G.G.; Swinton, P.A. Sodium Bicarbonate Supplementation and the Female Athlete: A Brief Commentary with Small Scale Systematic Review and Meta-analysis. Eur. J. Sport Sci. 2022, 22, 745–754. [Google Scholar] [CrossRef]
- Grgic, J.; Pedisic, Z.; Saunders, B.; Artioli, G.G.; Schoenfeld, B.J.; McKenna, M.J.; Bishop, D.J.; Kreider, R.B.; Stout, J.R.; Kalman, D.S.; et al. International Society of Sports Nutrition Position Stand: Sodium Bicarbonate and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 61. [Google Scholar] [CrossRef]
- Gibson, B.M.; Needham, K.W.; Kaiser, B.W.; Wilkins, B.W.; Minson, C.T.; Halliwill, J.R. Transcutaneous Delivery of Sodium Bicarbonate Increases Intramuscular pH. Front. Physiol. 2023, 14, 1142567. [Google Scholar] [CrossRef] [PubMed]
- Dieter, B.P.; Macias, C.J.; Sharpe, T.J.; Roberts, B.; Wille, M.; Young, A.; Reisenauer, C.; Cantrell, B.; Bayly, W.M. Transdermal Delivery of Carnosine into Equine Skeletal Muscle. Comp. Exerc. Physiol. 2021, 17, 429–434. [Google Scholar] [CrossRef]
- Gurton, W.H.; Greally, J.; Chudzikiewicz, K.; Gough, L.A.; Lynn, A.; Ranchordas, M.K. Beneficial Effects of Oral and Topical Sodium Bicarbonate during a Battery of Team Sport-Specific Exercise Tests in Recreationally Trained Male Athletes. J. Int. Soc. Sports Nutr. 2023, 20, 2216678. [Google Scholar] [CrossRef]
- Gurton, W.H.; Gough, L.A.; Siegler, J.C.; Lynn, A.; Ranchordas, M.K. Oral but Not Topical Sodium Bicarbonate Improves Repeated Sprint Performance During Simulated Soccer Match Play Exercise in Collegiate Athletes. Int. J. Sport Nutr. Exerc. Metab. 2024, 34, 362–371. [Google Scholar] [CrossRef]
- Seah, J.Z.H. Effect of Sodium Bicarbonate in a Transdermal Delivery System on Physiological Par: A Double Blind, Placebo-Controlled, Randomised, Crossover Study. Bachelor’s Thesis, Nanyang Technological University, Singapore, 2019. [Google Scholar]
- McKay, A.K.A.; Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Cross, R.; Siegler, J. Topical Sodium Bicarbonate: No Improvement in Blood Buffering Capacity or Exercise Performance. Int. J. Sports Physiol. Perform. 2020, 15, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Misell, L.M.; Ordille, A.; Alm, M.; Salewske, B. Double-Blind, Placebo Controlled, Randomized Crossover Pilot Study Evaluating The Impacts Of Sodium Bicarbonate in a Transdermal Delivery System on Physiological Parameters and Exercise Performance: 2402 Board #238 June 1 11 00 AM–12 30 PM. Med. Sci. Sports Exerc. 2018, 50, 595. [Google Scholar] [CrossRef]
- Sharpe, T.M.; Macias, C.J. Evaluation of the Efficacy of LactigoTM Topical Gel as an Ergogenic Aid. J. Exerc. Physiol. Online 2016, 19, 15–23. [Google Scholar]
- Harnish, C.R.; Miller, B. Transdermal Carnosine Gel Fails to Improve Repeated Wingate Performance in Trained Male Cyclists: A Randomized Controlled Cross-over Trial. J. Sports Sci. Nutr. 2023, 4, 106–111. [Google Scholar] [CrossRef]
- Brockelbank, N. The Application of a Topical Carnosine Gel and Its Effects on Intermittent High-Intensity Exercise Performance in Olympic-Level Rugby Sevens Players. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 2024. [Google Scholar]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 Statement: Updated Guideline for Reporting Randomised Trials. BMJ 2025, 389, e081123. [Google Scholar] [CrossRef]
- Pinot, J.; Grappe, F. The Record Power Profile to Assess Performance in Elite Cyclists. Int. J. Sports Med. 2011, 32, 839–844. [Google Scholar] [CrossRef]
- Borszcz, F.; Tramontin, A.; Bossi, A.; Carminatti, L.; Costa, V. Functional Threshold Power in Cyclists: Validity of the Concept and Physiological Responses. Int. J. Sports Med. 2018, 39, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Hurst, P.; Schipof-Godart, L.; Szabo, A.; Raglin, J.; Hettinga, F.; Roelands, B.; Lane, A.; Foad, A.; Coleman, D.; Beedie, C. The Placebo and Nocebo Effect on Sports Performance: A Systematic Review. Eur. J. Sport Sci. 2020, 20, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Atkinson, G.; Waterhouse, J. Chronobiology and Physical Performance. Exerc. Sport Sci. 2000, 24, 351–372. [Google Scholar]
- Thomas, K.; Stone, M.R.; Thompson, K.G.; St Clair Gibson, A.; Ansley, L. Reproducibility of Pacing Strategy during Simulated 20-Km Cycling Time Trials in Well-Trained Cyclists. Eur. J. Appl. Physiol. 2012, 112, 223–229. [Google Scholar] [CrossRef]
- Foster, C.; Hendrickson, K.J.; Peyer, K.; Reiner, B.; deKoning, J.J.; Lucia, A.; Battista, R.A.; Hettinga, F.J.; Porcari, J.P.; Wright, G. Pattern of Developing the Performance Template. Br. J. Sports Med. 2009, 43, 765–769. [Google Scholar] [CrossRef]
- Hibbert, A.W.; Billaut, F.; Varley, M.C.; Polman, R.C.J. Familiarization Protocol Influences Reproducibility of 20-Km Cycling Time-Trial Performance in Novice Participants. Front. Physiol. 2017, 8, 488. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gotti, D.; Codella, R.; Vergallito, L.; Meloni, A.; Arrighi, T.; La Torre, A.; Filipas, L. From Amateur to Professional Cycling: A Case Study on the Training Characteristics of a Zwift Academy Winner. Sports 2025, 13, 234. [Google Scholar] [CrossRef] [PubMed]
- Currell, K.; Jeukendrup, A.E. Validity, Reliability and Sensitivity of Measures of Sporting Performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef]
- Clark, B.; Paton, C.D.; O’Brien, B.J. The Reliability of Performance during Computer-Simulated Varying Gradient Cycling Time Trials. J. Sci. Cycl. 2014, 3, 29–33. [Google Scholar]
- Matta, G.; Edwards, A.; Roelands, B.; Hettinga, F.; Hurst, P. Reproducibility of 20-Min Time-Trial Performance on a Virtual Cycling Platform. Int. J. Sports Med. 2022, 43, 1190–1195. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Maxwell, S.E.; Delaney, H.D.; Kelley, K. Designing Experiments and Analyzing Data: A Model Comparison Perspective; Routledge: Oxford, UK, 2017; ISBN 1-315-64295-6. [Google Scholar]
- Ravindrakumar, A.; Bommasamudram, T.; Tod, D.; Edwards, B.J.; Chtourou, H.; Pullinger, S.A. Daily Variation in Performance Measures Related to Anaerobic Power and Capacity: A Systematic Review. Chronobiol. Int. 2022, 39, 421–455. [Google Scholar] [CrossRef]
- Matta, G.; Edwards, A.; Roelands, B.; Hettinga, F.; Hurst, P. No Placebo or Ergogenic Effect of Beetroot Juice during Virtual-Reality 20-Min Cycling Time Trials: A Randomised, Balanced Placebo Design Remote Study. Authorea 2023, Preprints. [Google Scholar] [CrossRef]
- Halson, S.L.; Martin, D.T. Lying to Win—Placebos and Sport Science. Int. J. Sports Physiol. Perform. 2013, 8, 597–599. [Google Scholar] [CrossRef] [PubMed]
- Garcia Matta, G. Placebo Effects on Cycling Performance in Virtual-Reality and Laboratory Environments. Ph.D. Thesis, Canterbury Christ Church University, Canterbury, UK, 2023. [Google Scholar]
- Barwood, M.J.; Gibson, O.R.; Gillis, D.J.; Jeffries, O.; Morris, N.B.; Pearce, J.; Ross, M.L.; Stevens, C.; Rinaldi, K.; Kounalakis, S.N. Menthol as an Ergogenic Aid for the Tokyo 2021 Olympic Games: An Expert-Led Consensus Statement Using the Modified Delphi Method. Sports Med. 2020, 50, 1709–1727. [Google Scholar] [CrossRef]
- Jeffries, O.; Waldron, M. The Effects of Menthol on Exercise Performance and Thermal Sensation: A Meta-Analysis. J. Sci. Med. Sport 2019, 22, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Best, R. Menthol: A Fresh Ergogenic Aid for Athletic Performance. Sports Med. 2017, 47, 1035–1042. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef]
- Velocity Animal Sciences Inc. Equine Velocity Recovery Topical Emulgel: Equestrian Horse Wellness. Available online: https://www.equinevelocity.com/ (accessed on 17 July 2025).
- Downs, S.H.; Black, N. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality Both of Randomised and Non-Randomised Studies of Health Care Interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
Overall | Zwift A | Zwift B | Zwift C | Zwift D | |
---|---|---|---|---|---|
Physical Characteristics | |||||
n | 15 | 4 | 3 | 4 | 4 |
Age (years) | 45.1 ± 12.1 | 42.0 (28.0, 50.0) | 54.0 (47, 61) | 46.0 (30.0, 51.0) | 53.5 (18, 55) |
Height (cm) | 175.6 ± 6.9 | 176.7 (175.0, 180.3) | 181.6 (177.8, 183) | 170.2 (159, 182.9) | 176.1 (167.6, 180.3) |
Weight (kg) | 74.4 ± 11.6 | 70.5 (65.4, 77.2) | 79.8 (69.5, 88.6) | 75.4 (60.5, 94.0) | 76.1 (55.5, 82.0) |
RHR (bpm) | 51.3 ± 7.8 | 47.5 (45.0, 51.0) | 45.0 (39.0, 56.0) | 53.5 (48.0, 58.0) | 58.5 (43.0, 66.0) |
MHR (bpm) | 177.1 ± 11.0 | 185.0 (185, 190.0) | 172.0 (168.0, 180.0) | 183.0 (161.0, 194.0) | 164.5 (161.0, 181.0) |
Performance Characteristics | |||||
MMP30s (W/kg) | 7.1 ± 2.3 | 9.8 (9.2, 10.4) # D | 6.8 (6.7, 6.9) | 6.7 (3.6, 9.3) | 5.8 (2.7, 7.4) |
MMP20 (W/kg) | 3.2 ± 1.0 | 4.4 (4.0, 4.6) * D | 3.5 (3.5, 3.7) | 2.8 (2.6, 2.9) | 2.2 (1.5, 2.5) |
MMP60 (W/kg) | 2.9 ± 0.9 | 4.0 (3.6, 4.1) * D | 3.3 (3.2, 3.4) | 2.6 (2.3, 3.1) | 1.9 (1.3, 2.2) |
Training Characteristics | |||||
Years training (years) | 13.4 ± 11.8 | 18.5 (3.0, 36.0) | 17.0 (12.0, 31.0) | 6.0 (1.0, 10.0) | 7.0 (2.0, 23.0) |
6-wk training Volume (min) | 454.0 ± 209.7 | 630.0 (180.0, 300.0) | 480.0 (480.0, 810.0) | 315.0 (180.0, 480.0) | 330.0 (90.0, 600.0) |
Typical training ride (min) | 123.0 ± 69.5 | 135.0 (90.0, 240.0) | 135.0 (120.0, 240.0) | 90.0 (60.0, 150.0) | 75.0 (60.0, 90.0) |
Typical longest ride (min) | 187.3 ± 68.6 | 240.0 (180.0, 300.0) # D | 240.0 (120.0, 300.0) | 150.0 (120.0, 270.0) | 150.0 (60.0, 180.0) |
Typical Race Duration (min) | 140 ± 86.8 | 60–600 | 60–300 | 60–120 | 60–180 |
Lap | Trial Condition | Entire Lap Average Power (W) | Average HR (bpm) | RPE (1–10) | Hill Climb Segment Average Power (W) | Sprint Segment Average Power (W) |
---|---|---|---|---|---|---|
FAM | 140.1 ± 38.9 | 114.4 ± 10.8 | 3.3 ± 1.7 | 159.3 ± 29.3 | 151.2 ± 55.7 | |
1 | TBC | 134.8 ± 41.3 | 115.6 ± 15.1 | 2.8 ± 1.6 | 151.7 ± 34.7 | 138.4 ± 56.8 |
TC | 136.3 ± 40.0 | 116.1 ± 15.4 | 3.1 ± 2.0 | 156.5 ± 34.0 | 121.3 ± 52.0 | |
PLAC | 136.2 ± 39.2 | 114.5 ± 11.9 | 3.2 ± 1.5 | 153.3 ± 35.1 | 141.3 ± 49.6 | |
FAM | 180.5 ± 56.3 | 138.4 ± 13.9 | 5.3 ± 1.4 | 267.2 ± 97.5 * | 431.0 ± 211.2 | |
AVG 2–4 | TBC | 180.8 ± 56.4 | 140.8 ± 16.1 | 5.3 ± 1.5 | 300.6 ± 101.6 | 483.0 ± 211.5 # |
TC | 185.1 ± 56.2 | 141.5 ± 16.9 | 5.5 ± 1.6 | 292.9 ± 103.0 | 464.9 ± 207.0 | |
PLAC | 192.8 ± 52.2 | 143.4 ± 15.6 | 5.3 ± 1.5 | 298.6 ± 101.2 | 488.5 ± 221.8 # | |
FAM | 181.0 ± 58.1 | 133.5 ± 14.6 | 5.6 ± 1.3 | 274.8 ± 100.8 | 437.4 ± 215.7 | |
2 | TBC | 185.3 ± 57.2 | 137.8 ± 18.0 | 5.7 ± 1.6 | 309.4 ± 103.5 | 502.8 ± 222.6 |
TC | 187.3 ± 55.6 | 136.7 ± 17.3 | 5.9 ± 1.6 | 298.8 ± 111.6 | 468.2 ± 235.6 | |
PLAC | 196.6 ± 52.4 | 138.0 ± 16.8 | 5.6 ± 1.6 | 304.6 ± 102.8 | 494.9 ± 214.8 | |
FAM | 182.8 ± 55.2 | 136.6 ± 14.4 | 5.6 ± 1.5 | 256.0 ± 101.1 | 414.6 ± 223.0 | |
3 | TBC | 181.3 ± 55.2 | 139.8 ± 17.8 | 6.0 ± 1.6 | 292.2 ± 110.0 | 464.4 ± 230.0 |
TC | 185.3 ± 54.6 | 140.1 ± 18.7 | 5.9 ± 1.6 | 273.0 ± 103.4 | 458.7 ± 225.2 | |
PLAC | 191.6 ± 52.5 | 141.2 ± 16.6 | 5.8 ± 1.8 | 291.5 ± 107.8 | 475.5 ± 251.6 | |
FAM | 177.7 ± 57.6 | 138.5 ± 12.7 | 6.6 ± 1.1 | 270.6 ± 104.2 | 440.9 ± 216.9 | |
4 | TBC | 175.9 ± 58.8 | 139.5 ± 16.3 | 6.7 ± 1.3 | 300.2 ± 101.8 | 481.8 ± 203.9 |
TC | 182.8 ± 60.1 | 141.4 ± 15.8 | 6.9 ± 1.0 | 297.0 ± 102.1 | 467.7 ± 188.7 | |
PLAC | 190.3 ± 52.9 | 143.6 ± 15.0 | 6.5 ± 1.3 | 299.8 ± 102.5 | 495.1 ± 210.8 | |
FAM | 220.8 ± 76.8 * | 152.1 ± 12.2 | 8.2 ± 0.9 | 235.2 ± 66.9 | 247.0 ± 74.4 | |
5 | TBC | 232.9 ± 69.5 | 155.7 ± 13.6 | 8.5 ± 1.2 | 246.3 ± 69.9 | 240.7 ± 56.9 |
TC | 229.5 ± 67.3 | 155.4 ± 15.4 | 8.6 ± 1.2 | 243.4 ± 65.2 | 244.7 ± 63.6 | |
PLAC | 233.0 ± 73.1 | 156.8 ± 14.0 | 8.3 ± 1.1 | 245.3 ± 72.9 | 236.3 ± 69.8 |
Author | Treatment | Sport | n | RCT | PLAC | Matched PLAC | Measures | Improvement | DB Score (30) |
---|---|---|---|---|---|---|---|---|---|
Harnish et al. 2025 | TBC/TC | Cycling | 15 | Yes | Yes | No | RS, HI, TT, END | No improvement across all measures. | 26 |
Gurton et. al. 2024 [29] | OBC/TBC | Soccer | 10 | Yes | Yes | No | RS | No change in acid-base balance and no improvement across all measures for TBC. | 24 |
Gurton et. al. 2023 [28] | OBC/TBC | Team Field Sport | 14 | Yes | Yes | No | RS | No change in acid-base balance, similar < 2% improvement for RS compared to OBC. | 24 |
McKay et al. 2020 [31] | OBC/TBC | Cycling | 10 | Yes | Yes | No | RS | No change in acid-base balance and no improvement across all measures for TBC. | 23 |
Kern et al. 2019 * [32] | TBC | Cycling | 20 | Yes | Yes | No | S, TT | No change in acid-base balance and no improvement across all measures for TBC. | 22 |
Seah et al. 2019 ^ [30] | TBC | Team Field Sport | 10 | Yes | Yes | ? | RS | No improvement across all measures. | 6 |
Brockelbank 2024 # [35] | TC | Rugby | 12 | Yes | Yes | Yes | RS | No improvement in average peak or mean sprint power. | 24 |
Harnish and Miller 2023 [34] | TC | Cycling | 15 | Yes | Yes | No | RS | No improvement across all measures. | 28 |
Sharpe and Macias 2016 [33] | TC | Soccer | 11 | No | No | No | RS, TT | Yes. Final TC trials showed small TT improvement. | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnish, C.R.; Holman, M.E.; Bruneau, M.L., Jr. An Inconvenient Truth: Transdermal Buffering Lotions Appear to Offer No Significant Performance Improvement. Physiologia 2025, 5, 35. https://doi.org/10.3390/physiologia5030035
Harnish CR, Holman ME, Bruneau ML Jr. An Inconvenient Truth: Transdermal Buffering Lotions Appear to Offer No Significant Performance Improvement. Physiologia. 2025; 5(3):35. https://doi.org/10.3390/physiologia5030035
Chicago/Turabian StyleHarnish, Christopher R., Matthew E. Holman, and Michael L. Bruneau, Jr. 2025. "An Inconvenient Truth: Transdermal Buffering Lotions Appear to Offer No Significant Performance Improvement" Physiologia 5, no. 3: 35. https://doi.org/10.3390/physiologia5030035
APA StyleHarnish, C. R., Holman, M. E., & Bruneau, M. L., Jr. (2025). An Inconvenient Truth: Transdermal Buffering Lotions Appear to Offer No Significant Performance Improvement. Physiologia, 5(3), 35. https://doi.org/10.3390/physiologia5030035