The Future of Chemotherapy: The Mechanisms and Benefits of Exercise in Taxane-Induced Peripheral Neuropathy
Abstract
:1. Introduction
2. Mechanisms of CIPN
2.1. Axonal Degeneration and Demyelination
Measurement of CIPN
2.2. Central Nervous System Alterations in CIPN
2.3. Mechanisms of Key CIPN Classes
2.3.1. Taxane-Based Compounds
2.3.2. Platinum-Based Compounds
2.3.3. Vinca-Alkaloid Based Compounds
2.4. CIPN Manifestations and Patterns
2.4.1. Manifestations of CIPN
2.4.2. Onset of CIPN
2.4.3. Intensity and Duration of CIPN
2.5. Limitations to Duloxetine Treatment for CIPN
2.6. Exercise Effects on CIPN and Potential Mechanisms
2.6.1. Mitochondrial Function
2.6.2. Axonal Integrity
2.6.3. Neurotrophic Factors
2.6.4. Anti-Inflammatory Effects
2.6.5. Brain Hyperactivity
2.7. Measurement of CIPN in Exercise Rehabilitation Studies
2.8. Significance of Exercise for TIPN in Breast Cancer Survivors
3. Literature Review
3.1. Results
3.2. Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chabner, B.; Roberts, T. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 2019, 69, 363–385. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Available online: https://www.cancer.org/cancer/managing-cancer/side-effects/nervous-system/peripheral-neuropathy/what-is-peripherial-neuropathy.html (accessed on 10 February 2022).
- National Institute of Neurological Disorders and Stroke. Available online: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Peripheral-Neuropathy-Fact-Sheet (accessed on 29 January 2022).
- UC San Diego Health. Available online: https://health.ucsd.edu/specialties/neuro/specialty-programs/peripheral-nerve-disorders/pages/about-peripheral-nerves.aspx (accessed on 29 January 2022).
- Cheng, X.L.; Liu, H.Q.; Wang, Q.; Huo, J.G.; Wang, X.N.; Cao, P. Chemotherapy-induced peripheral neurotoxicity and complementary and alternative medicines: Progress and perspective. Front. Pharmacol. 2015, 6, 234. [Google Scholar] [CrossRef] [PubMed]
- Kolb, N.A.; Smith, A.G.; Singleton, J.R.; Beck, S.L.; Stoddard, G.J.; Brown, S.; Mooney, K. The Association of Chemotherapy-Induced Peripheral Neuropathy Symptoms and the Risk of Falling. JAMA Neurol. 2016, 73, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Mols, F.; van de Poll-Franse, L.V.; Vreugdenhil, G.; Beijers, A.J.; Kieffer, J.M.; Aaronson, N.K.; Husson, O. Reference data of the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-CIPN20 Questionnaire in the general Dutch population. Eur. J. Cancer 2016, 69, 28–38. [Google Scholar] [CrossRef]
- Starobova, H.; Vetter, I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017, 10, 174. [Google Scholar] [CrossRef]
- Speck, R.M.; Courneya, K.S.; Mâsse, L.C.; Duval, S.; Schmitz, K.H. An update of controlled physical activity trials in cancer survivors: A systematic review and meta-analysis. J. Cancer Surviv. 2010, 4, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Velasco, R.; Bruna, J. Taxane-Induced Peripheral Neurotoxicity. Toxics 2015, 3, 152–169. [Google Scholar] [CrossRef]
- Ibrahim, E.Y.; Ehrlich, B.E. Prevention of chemotherapy-induced peripheral neuropathy: A review of recent findings. Crit. Rev. Oncol. 2020, 145, 102831. [Google Scholar] [CrossRef]
- Mo, H.; Yan, X.; Zhao, F.; Teng, Y.; Sun, X.; Lv, Z.; Cao, M.; Zhao, J.; Song, G.; Pan, B.; et al. Association of Taxane Type With Patient-Reported Chemotherapy-Induced Peripheral Neuropathy Among Patients With Breast Cancer. JAMA Netw. Open 2022, 5, e2239788. [Google Scholar] [CrossRef]
- Speck, R.M.; Sammel, M.D.; Farrar, J.T.; Hennessy, S.; Mao, J.J.; Stineman, M.G.; DeMichele, A. Impact of Chemotherapy-Induced Peripheral Neuropathy on Treatment Delivery in Nonmetastatic Breast Cancer. J. Oncol. Prac. 2013, 9, e234–e240. [Google Scholar] [CrossRef]
- Berta, T.; Qadri, Y.; Tan, P.-H.; Ji, R.-R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets 2017, 21, 695–703. [Google Scholar] [CrossRef]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front. Pharmacol. 2022, 13, 750507. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Cetinkaya-Fisgin, A.; Argyriou, A.A.; Höke, A.; Cavaletti, G.; Alberti, P. Axonal degeneration in chemotherapy-induced peripheral neurotoxicity: Clinical and experimental evidence. J. Neurol. Neurosurg. Psychiatry 2023, 94, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, F.-Y.; Ling, Z.-M.; Su, W.-F.; Zhao, Y.-Y.; Chen, G.; Wei, Z.-Y. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front. Cell. Neurosci. 2022, 16, 836931. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J.; Nair, P.P. Diagnostic approach to peripheral neuropathy. Ann. Indian Acad. Neurol. 2008, 11, 89–97. [Google Scholar] [CrossRef]
- Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.-Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J. Clin. 2013, 63, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Hovaguimian, A.; Gibbons, C.H. Diagnosis and Treatment of Pain in Small-fiber Neuropathy. Curr. Pain Headache Rep. 2011, 15, 193–200. [Google Scholar] [CrossRef]
- Blackmore, D.; Siddiqi, Z.A. Diagnostic Criteria for Small Fiber Neuropathy. J. Clin. Neuromuscul. Dis. 2017, 18, 125–131. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef]
- Branca, J.J.V.; Maresca, M.; Morucci, G.; Becatti, M.; Paternostro, F.; Gulisano, M.; Ghelardini, C.; Salvemini, D.; Di Cesare Mannelli, L.; Pacini, A. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity. Oncotarget 2018, 9, 23426–23438. [Google Scholar] [CrossRef]
- Gornstein, E.L.; Schwarz, T.L. Neurotoxic mechanisms of paclitaxel are local to the distal axon and independent of transport defects. Exp. Neurol. 2017, 288, 153–166. [Google Scholar] [CrossRef]
- Bettelheim, F.A.; Brown, W.H.; Campbell, M.K.; Farrell, S.O. Introduction to Organic and Biochemistry; Cengage Learning: Belmont, CA, USA, 2010; Volume 7. [Google Scholar]
- Lee, J.J.; Swain, S.M. Peripheral Neuropathy Induced by Microtubule-Stabilizing Agents. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 1633–1642. [Google Scholar] [CrossRef]
- Boyette-Davis, J.; Xin, W.; Zhang, H.; Dougherty, P.M. Intraepidermal nerve fiber loss corresponds to the development of Taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011, 152, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Tamburin, S.; Park, S.B.; Alberti, P.; Demichelis, C.; Schenone, A.; Argyriou, A.A. Taxane and epothilone-induced peripheral neurotoxicity: From pathogenesis to treatment. J. Peripher. Nerv. Syst. 2019, 24 (Suppl. 2), S40–S51. [Google Scholar] [CrossRef] [PubMed]
- Areti, A.; Yerra, V.G.; Naidu, V.; Kumar, A. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014, 2, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Xiao, W.H.; Bennett, G.J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 2011, 232, 154–161. [Google Scholar] [CrossRef]
- Doyle, T.; Chen, Z.; Muscoli, C.; Bryant, L.; Esposito, E.; Cuzzocrea, S.; Dagostino, C.; Ryerse, J.; Rausaria, S.; Kamadulski, A.; et al. Targeting the Overproduction of Peroxynitrite for the Prevention and Reversal of Paclitaxel-Induced Neuropathic Pain. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 6149–6160. [Google Scholar] [CrossRef] [PubMed]
- Duggett, N.A.; Griffiths, L.A.; McKenna, O.E.; de Santis, V.; Yongsanguanchai, N.; Mokori, E.B.; Flatters, S.J. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016, 333, 13–26. [Google Scholar] [CrossRef]
- Xiao, W.; Zheng, H.; Zheng, F.; Nuydens, R.; Meert, T.; Bennett, G. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 2011, 199, 461–469. [Google Scholar] [CrossRef]
- Zaks-Zilberman, M.; Zaks, T.Z.; Vogel, S.N. Induction of proinflammatory and chemokine genes by lipopolysaccharide and paclitaxel (Taxol) in murine and human breast cancer cell lines. Cytokine 2001, 15, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-H.; Yeh, Y.-M.; Chen, Y.-F.; Hsu, Y.-H.; Wang, H.-H.; Lin, P.-C.; Chang, L.-Y.; Lin, C.-C.K.; Chang, M.-S.; Shen, M.-R. Targeting interleukin-20 alleviates paclitaxel-induced peripheral neuropathy. Pain 2020, 161, 1237–1254. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Chen, L.-H.; Yeh, Y.-M.; Wu, P.-Y.; Chen, Y.-F.; Chang, L.-Y.; Chang, J.-Y.; Shen, M.-R. Minoxidil is a potential neuroprotective drug for paclitaxel-induced peripheral neuropathy. Sci. Rep. 2017, 7, 45366. [Google Scholar] [CrossRef] [PubMed]
- Kalynovska, N.; Diallo, M.; Sotakova-Kasparova, D.; Palecek, J. Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J. Cell. Mol. Med. 2020, 24, 7949–7958. [Google Scholar] [CrossRef]
- Peters, C.M.; Jimenez-Andrade, J.M.; Jonas, B.M.; Sevcik, M.A.; Koewler, N.J.; Ghilardi, J.R.; Wong, G.Y.; Mantyh, P.W. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 2007, 203, 42–54. [Google Scholar] [CrossRef] [PubMed]
- Cliffer, K.D.; Siuciak, J.A.; Carson, S.R.; Radley, H.E.; Park, J.S.; Lewis, D.R.; Zlotchenko, E.; Nguyen, T.; Garcia, K.; Tonra, J.R.; et al. Physiological characterization of taxol-induced large-fiber sensory neuropathy in the rat. Ann. Neurol. 1998, 43, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Polomano, R.C.; Mannes, A.J.; Clark, U.S.; Bennett, G.J. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001, 94, 293–304. [Google Scholar] [CrossRef]
- Flatters, S.J.L.; Bennett, G.J. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 2006, 122, 245–257. [Google Scholar] [CrossRef]
- Siau, C.; Xiao, W.; Bennett, G.J. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: Loss of epidermal innervation and activation of Langerhans cells. Exp. Neurol. 2006, 201, 507–514. [Google Scholar] [CrossRef]
- Siau, C.; Bennett, G.J. Dysregulation of Cellular Calcium Homeostasis in Chemotherapy-Evoked Painful Peripheral Neuropathy. Anesth. Analg. 2006, 102, 1485–1490. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of Chemotherapy-Induced Peripheral Neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.H.; Bennett, G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 2012, 153, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Aromolaran, K.A.; Goldstein, P.A. Ion channels and neuronal hyperexcitability in chemotherapy-induced peripheral neuropathy; cause and effect? Mol. Pain 2017, 13, 1744806917714693. [Google Scholar] [CrossRef] [PubMed]
- Adelsberger, H.; Quasthoff, S.; Grosskreutz, J.; Lepier, A.; Eckel, F.; Lersch, C. The chemotherapeutic oxaliplatin alters voltage-gated Na+ channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 2000, 406, 25–32. [Google Scholar] [CrossRef]
- Krishnan, A.V.; Goldstein, D.; Friedlander, M.; Kiernan, M.C. Oxaliplatin and Axonal Na+ Channel Function In vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 4481–4484. [Google Scholar] [CrossRef]
- Thibault, K.; Calvino, B.; Dubacq, S.; Roualle-De-Rouville, M.; Sordoillet, V.; Rivals, I.; Pezet, S. Cortical effect of oxaliplatin associated with sustained neuropathic pain: Exacerbation of cortical activity and down-regulation of potassium channel expression in somatosensory cortex. Pain 2012, 153, 1636–1647. [Google Scholar] [CrossRef]
- Ta, L.E.; Espeset, L.; Podratz, J.; Windebank, A.J. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum–DNA binding. NeuroToxicology 2006, 27, 992–1002. [Google Scholar] [CrossRef]
- Schoch, S.; Gajewski, S.; Rothfuß, J.; Hartwig, A.; Köberle, B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int. J. Mol. Sci. 2020, 21, 6928. [Google Scholar] [CrossRef]
- Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 2015, 76, 1101–1112. [Google Scholar] [CrossRef]
- Nahavandi, A.; Mehrabi, S. Axonal transport proteins: What they are and how they relate to depressive behaviors. In The Neuroscience of Depression; Academic Press: Cambridge, MA, USA, 2021; pp. 197–213. [Google Scholar] [CrossRef]
- Silva, A.; Wang, Q.; Wang, M.; Ravula, S.K.; Glass, J.D. Evidence for direct axonal toxicity in vincristine neuropathy. J. Peripher. Nerv. Syst. 2006, 11, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, J.; Summers, D.W.; Sasaki, Y.; DiAntonio, A.; Milbrandt, J. Sarm1-Mediated Axon Degeneration Requires Both SAM and TIR Interactions. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 13569–13580. [Google Scholar] [CrossRef] [PubMed]
- Geisler, S.; Doan, R.A.; Cheng, G.C.; Cetinkaya-Fisgin, A.; Huang, S.X.; Höke, A.; Milbrandt, J.; DiAntonio, A. Vincristine and bortezomib use distinct upstream mechanisms to activate a common SARM1-dependent axon degeneration program. JCI Insight 2019, 4, e129920. [Google Scholar] [CrossRef]
- Old, E.A.; Nadkarni, S.; Grist, J.; Gentry, C.; Bevan, S.; Kim, K.-W.; Mogg, A.J.; Perretti, M.; Malcangio, M. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J. Clin. Investig. 2014, 124, 2023–2036. [Google Scholar] [CrossRef]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain 2019, 160 (Suppl. 1), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Argyriou, A.A.; Zolota, V.; Kyriakopoulou, O.; Kalofonos, H.P. Toxic peripheral neuropathy associated with commonly used chemotherapeutic agents. J. B.U.ON. Off. J. Balk. Union Oncol. 2010, 15, 435–446. [Google Scholar]
- Deuis, J.R.; Zimmermann, K.; Romanovsky, A.A.; Possani, L.D.; Cabot, P.J.; Lewis, R.J.; Vetter, I. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 2013, 154, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- De Iuliis, F.; Taglieri, L.; Salerno, G.; Lanza, R.; Scarpa, S. Taxane induced neuropathy in patients affected by breast cancer: Literature review. Crit. Rev. Oncol. 2015, 96, 34–45. [Google Scholar] [CrossRef]
- Argyriou, A.A.; Park, S.B.; Islam, B.; Tamburin, S.; Velasco, R.; Alberti, P.; Bruna, J.; Psimaras, D.; Cavaletti, G.; Cornblath, D.R.; et al. Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1361–1369. [Google Scholar] [CrossRef]
- Raffa, R.B.; Langford, R.; Pergolizzi, J.V., Jr.; Porreca, F.; Tallarida, R.J. Chemotherapy-Induced Neuropathic Pain; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Custodio, C.M.; Knowlton, S.E. Essentials of Physical Medicine and Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 529–532. [Google Scholar] [CrossRef]
- Jordan, B.; Margulies, A.; Cardoso, F.; Cavaletti, G.; Haugnes, H.; Jahn, P.; Le Rhun, E.; Preusser, M.; Scotté, F.; Taphoorn, M.; et al. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO–EONS–EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann. Oncol. 2020, 31, 1306–1319. [Google Scholar] [CrossRef]
- Melchior, M.; Juif, P.-E.; Gazzo, G.; Petit-Demoulière, N.; Chavant, V.; Lacaud, A.; Goumon, Y.; Charlet, A.; Lelièvre, V.; Poisbeau, P. Pharmacological rescue of nociceptive hypersensitivity and oxytocin analgesia impairment in a rat model of neonatal maternal separation. Pain 2018, 159, 2630–2640. [Google Scholar] [CrossRef] [PubMed]
- Van Der Hoop, R.G.; Van Der Burg, M.E.L.; ten Bokkel Huinink, W.W.; Van Houwelingen, J.C.; Neijt, J.P. Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer 1990, 66, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Krarup-Hansen, A.; Helweg-Larsen, S.; Schmalbruch, H.; Rorth, M.; Krarup, C. Neuronal involvement in cisplatin neuropathy: Prospective clinical and neurophysiological studies. Brain 2007, 130 Pt 4, 1076–1788. [Google Scholar] [CrossRef]
- Mollman, J.E.; Glover, D.J.; Hogan, W.M.; Furman, R.E. Cisplatin neuropathy. Risk factors, prognosis, and protection by WR-2721. Cancer 1988, 61, 2192–2195. [Google Scholar] [CrossRef] [PubMed]
- Ahimsadasan, N.; Reddy, V.; Khan Suheb, M.Z.; Kumar, A. Neuroanatomy, Dorsal Root Ganglion. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2022. [Google Scholar]
- Briani, C.; Argyriou, A.A.; Izquierdo, C.; Velasco, R.; Campagnolo, M.; Alberti, P.; Frigeni, B.; Cacciavillani, M.; Bergamo, F.; Cortinovis, D.; et al. Long-term course of oxaliplatin-induced polyneuropathy: A prospective 2-year follow-up study. J. Peripher. Nerv. Syst. JPNS 2014, 19, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Seretny, M.; Currie, G.L.; Sena, E.S.; Ramnarine, S.; Grant, R.; MacLeod, M.R.; Colvin, L.A.; Fallon, M. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain 2014, 155, 2461–2470. [Google Scholar] [CrossRef] [PubMed]
- Gregg, R.W.; Molepo, J.M.; Monpetit, V.J.; Mikael, N.Z.; Redmond, D.; Gadia, M.; Stewart, D.J. Cisplatin neurotoxicity: The relationship between dosage, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1992, 10, 795–803. [Google Scholar] [CrossRef]
- SandLer, S.G.; Tobin, W.; Henderson, E.S. Vincristine-induced neuropathy: A clinical study of fifty leukemic patients. Neurology 1969, 19, 367. [Google Scholar] [CrossRef]
- Burgess, J.; Ferdousi, M.; Gosal, D.; Boon, C.; Matsumoto, K.; Marshall, A.; Mak, T.; Marshall, A.; Frank, B.; Malik, R.A.; et al. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol. Ther. 2021, 9, 385–450. [Google Scholar] [CrossRef]
- de Gramont, A.; Figer, A.; Seymour, M.; Homerin, M.; Hmissi, A.; Cassidy, J.; Boni, C.; Cortes-Funes, H.; Cervantes, A.; Freyer, G.; et al. Leucovorin and Fluorouracil With or Without Oxaliplatin as First-Line Treatment in Advanced Colorectal Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 2938–2947. [Google Scholar] [CrossRef]
- Leonard, G.D.; Wright, M.A.; Quinn, M.G.; Fioravanti, S.; Harold, N.; Schuler, B.; Thomas, R.R.; Grem, J.L. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer 2005, 5, 116. [Google Scholar] [CrossRef]
- Gebremedhn, E.G.; Shortland, P.J.; Mahns, D.A. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: A systematic review. BMC Cancer 2018, 18, 410. [Google Scholar] [CrossRef] [PubMed]
- Eckhoff, L.; Knoop, A.; Jensen, M.; Ewertz, M. Persistence of docetaxel-induced neuropathy and impact on quality of life among breast cancer survivors. Eur. J. Cancer 2015, 51, 292–300. [Google Scholar] [CrossRef]
- Cioroiu, C.; Weimer, L.H. Update on Chemotherapy-Induced Peripheral Neuropathy. Curr. Neurol. Neurosci. Rep. 2017, 17, 47. [Google Scholar] [CrossRef]
- Casey, E.B.; Jellife, A.M.; LE Quesne, P.M.; Millett, Y.L. Vincristine neuropathy. Clinical and electrophysiological observations. Brain 1973, 96, 69–86. [Google Scholar] [CrossRef]
- Smith, E.; Pang, H.; Ye, C.; Cirrincione, C.; Fleishman, S.; Paskett, E.; Ahles, T.; Bressler, L.; Le-Lindqwister, N.; Fadul, C.; et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): A secondary analysis of randomised controlled trial—CALGB/alliance 170601. Eur. J. Cancer Care 2017, 26, e12421. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, I.R.; Kamen, C.; Gewandter, J.S.; Mohile, N.A.; Heckler, C.E.; Culakova, E.; Fung, C.; Janelsins, M.C.; Asare, M.; Lin, P.J.; et al. Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: A multicenter, randomized controlled trial. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2018, 26, 1019–1028. [Google Scholar] [CrossRef]
- Wonders, K.Y. The Effect of Supervised Exercise Training on Chemotherapy-Induced Peripheral Neuropathy. Int. J. Phys. Med. Rehabil. 2014, 2, 210–215. [Google Scholar] [CrossRef]
- Fernandes, J.; Kumar, S. Effect of lower limb closed kinematic chain exercises on balance in patients with chemotherapy-induced peripheral neuropathy: A pilot study. Int. J. Rehabil. Res. 2016, 39, 368–371. [Google Scholar] [CrossRef]
- Zimmer, P.; Trebing, S.; Timmers-Trebing, U.; Schenk, A.; Paust, R.; Bloch, W.; Rudolph, R.; Streckmann, F.; Baumann, F.T. Eight-week, multimodal exercise counteracts a progress of chemotherapy-induced peripheral neuropathy and improves balance and strength in metastasized colorectal cancer patients: A randomized controlled trial. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2018, 26, 615–624. [Google Scholar] [CrossRef]
- Streckmann, F.; Kneis, S.; Leifert, J.A.; Baumann, F.T.; Kleber, M.; Ihorst, G.; Herich, L.; Grüssinger, V.; Gollhofer, A.; Bertz, H. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann. Oncol. 2014, 25, 493–499. [Google Scholar] [CrossRef]
- Chung, K.H.; Park, S.B.; Streckmann, F.; Wiskemann, J.; Mohile, N.; Kleckner, A.S.; Colloca, L.; Dorsey, S.G.; Kleckner, I.R. Mechanisms, Mediators, and Moderators of the Effects of Exercise on Chemotherapy-Induced Peripheral Neuropathy. Cancers 2022, 14, 1224. [Google Scholar] [CrossRef]
- Sorriento, D.; Di Vaia, E.; Iaccarino, G. Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Front. Physiol. 2021, 12, 660068. [Google Scholar] [CrossRef]
- Eluamai, A.; Brooks, K. Effect of aerobic exercise on mitochondrial DNA and aging. J. Exerc. Sci. Fit. 2013, 11, 1–5. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, S.; Hoke, A. An exercise regimen prevents development paclitaxel induced peripheral neuropathy in a mouse model. J. Peripher. Nerv. Syst. JPNS 2015, 20, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Höke, A. Treadmill Exercise Induced Functional Recovery after Peripheral Nerve Repair Is Associated with Increased Levels of Neurotrophic Factors. PLoS ONE 2014, 9, e90245. [Google Scholar] [CrossRef]
- Wilhelm, J.C.; Xu, M.; Cucoranu, D.; Chmielewski, S.; Holmes, T.; Lau, K.S.; Bassell, G.J.; English, A.W. Cooperative Roles of BDNF Expression in Neurons and Schwann Cells Are Modulated by Exercise to Facilitate Nerve Regeneration. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 5002–5009. [Google Scholar] [CrossRef] [PubMed]
- Cobianchi, S.; Arbat-Plana, A.; Lopez-Alvarez, V.M.; Navarro, X. Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors. Curr. Neuropharmacol. 2017, 15, 495–518. [Google Scholar] [CrossRef] [PubMed]
- Whalen, L.B.; Wright, W.Z.; Kundur, P.; Angadi, S.; Modesitt, S.C. Beneficial effects of exercise on chemotherapy-induced peripheral neuropathy and sleep disturbance: A review of literature and proposed mechanisms. Gynecol. Oncol. Rep. 2022, 39, 100927. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, L.; d’Angelo, M.; Antonosante, A.; Allegretti, M.; Cimini, A. Chemokine Signaling in Chemotherapy-Induced Neuropathic Pain. Int. J. Mol. Sci. 2019, 20, 2904. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, I.R.; Zhang, J.; Touroutoglou, A.; Chanes, L.; Xia, C.; Simmons, W.K.; Quigley, K.S.; Dickerson, B.C.; Barrett, L.F. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 2017, 1, 0069. [Google Scholar] [CrossRef] [PubMed]
- Omran, M.; Belcher, E.K.; Mohile, N.A.; Kesler, S.R.; Janelsins, M.C.; Hohmann, A.G.; Kleckner, I.R. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Biosci. 2021, 8, 693133. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, I.; Gewandter, J.S.; Heckler, C.E.; Staples, S.; Colasurdo, A.; Lin, P.-J.; Shayne, M.; Huston, A.; Magnuson, A.; Tejani, M.; et al. The effect of structured exercise during chemotherapy on chemotherapy-induced peripheral neuropathy (CIPN): A role for interoceptive brain circuitry. J. Clin. Oncol. 2019, 37, 11590. [Google Scholar] [CrossRef]
- Park, S.B.; Tamburin, S.; Schenone, A.; Kleckner, I.R.; Velasco, R.; Alberti, P.; Kanzawa-Lee, G.; Lustberg, M.; Dorsey, S.G.; Mantovani, E.; et al. Optimal outcome measures for assessing exercise and rehabilitation approaches in chemotherapy-induced peripheral-neurotoxicity: Systematic review and consensus expert opinion. Expert Rev. Neurother. 2022, 22, 65–76. [Google Scholar] [CrossRef]
- Gui, Q.; Li, D.; Zhuge, Y.; Xu, C. Efficacy of Exercise Rehabilitation Program in Relieving Oxaliplatin Induced Peripheral Neurotoxicity. Asian Pac. J. Cancer Prev. 2021, 22, 705–709. [Google Scholar] [CrossRef]
- Bland, K.A.; Kirkham, A.A.; Bovard, J.; Shenkier, T.; Zucker, D.; McKenzie, D.C.; Davis, M.K.; Gelmon, K.A.; Campbell, K.L. Effect of Exercise on Taxane Chemotherapy–Induced Peripheral Neuropathy in Women With Breast Cancer: A Randomized Controlled Trial. Clin. Breast Cancer 2019, 19, 411–422. [Google Scholar] [CrossRef]
- Andersen Hammond, E.; Pitz, M.; Steinfeld, K.; Lambert, P.; Shay, B. An Exploratory Randomized Trial of Physical Therapy for the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Neurorehabilit. Neural Repair 2020, 34, 235–246. [Google Scholar] [CrossRef]
- Vollmers, P.L.; Mundhenke, C.; Maass, N.; Bauerschlag, D.; Kratzenstein, S.; Röcken, C.; Schmidt, T. Evaluation of the effects of sensorimotor exercise on physical and psychological parameters in breast cancer patients undergoing neurotoxic chemotherapy. J. Cancer Res. Clin. Oncol. 2018, 144, 1785–1792. [Google Scholar] [CrossRef]
- Simsek, N.Y.; Demir, A. Cold Application and Exercise on Development of Peripheral Neuropathy during Taxane Chemotherapy in Breast Cancer Patients: A Randomized Controlled Trial. Asia-Pacific J. Oncol. Nurs. 2021, 8, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Courneya, K.S.; McKenzie, D.C.; Mackey, J.R.; Gelmon, K.; Friedenreich, C.M.; Yasui, Y.; Reid, R.D.; Cook, D.; Jespersen, D.; Proulx, C.; et al. Effects of Exercise Dose and Type During Breast Cancer Chemotherapy: Multicenter Randomized Trial. J. Natl. Cancer Inst. 2013, 105, 1821–1832. [Google Scholar] [CrossRef] [PubMed]
- Tofthagen, C.S.; McMillan, S.C.; Kip, K.E. Development and Psychometric Evaluation of the Chemotherapy-Induced Peripheral Neuropathy Assessment Tool. Cancer Nurs. 2011, 34, E10–E20. [Google Scholar] [CrossRef] [PubMed]
- Brownson-Smith, R.; Orange, S.T.; Cresti, N.; Hunt, K.; Saxton, J.; Temesi, J. Effect of exercise before and/or during taxane-containing chemotherapy treatment on chemotherapy-induced peripheral neuropathy symptoms in women with breast cancer: Systematic review and meta-analysis. J. Cancer Surviv. 2023; Advance online publication. [Google Scholar] [CrossRef]
Citation | Participants | Design | Exercise Intervention |
---|---|---|---|
Bland et al., 2019 [106] | A total of 27 women with stage I–III breast cancer scheduled to receive taxane chemotherapy (nPACLITAXEL = 20; nDOCETAXEL = 7) | Participants were randomized to IG (exercise during chemotherapy) or waitlist CG (exercise after chemotherapy) group; were assessed with the EORTC QLQ C30 and CIPN20; assessed at baseline (before chemotherapy), pre-cycle 4 (before the final taxane cycle), the end of chemotherapy, and follow-up (10–15 weeks after chemotherapy) | Supervised aerobic, resistance, and balance training that was conducted 3 days a week for 8–12 weeks |
Hammond et al., 2020 [107] | A total of 48 women with stage I-III breast cancer scheduled to receive adjuvant taxane chemotherapy (nDOCETAXEL = 48) | Participants were randomized to treatment (exercise during and after chemotherapy) or CG (treatment as usual) group; were assessed with QST and patient questionnaires: Numeric Pain Rating Scale (NPRS), Disability of the Arm, Shoulder, and Hand (DASH), and Self-report version of Leeds Assessment for Neuropathic Symptoms and Signs (S-LANSS); assessed prior to chemotherapy, mid-treatment, post-chemotherapy, 3 months post-chemotherapy, and 6 months post-chemotherapy | Home-based nerve gliding exercises were performed 3 times daily post-surgery to 6 months post-treatment; average duration was 8.25 months |
Vollmers et al., 2018 [108] | A total of 36 women with breast cancer scheduled to receive paclitaxel chemotherapy (nPACLITAXEL = 36) | Participants were randomized to the IG (exercise during chemotherapy) or CG (informed of side effects but and were suggested to design their own physical activity plan) were assessed with EORTC, Multidimensional Fatigue Inventory (MFI-20), BR23, CIPN20, and Fullerton Advanced Balance Scale; assessed at T0 (before Paclitaxel treatment), T1 (12 weeks after last dose), and T2 (24 weeks follow-up) | General strength, endurance, and sensorimotor training were conducted 2 times per week throughout treatment and 6 weeks after chemotherapy treatment |
Şimşek et al., 2021 [109] | A total of 90 women with stage II-IV breast cancer scheduled to receive taxane chemotherapy | Participants were randomized to exercise, cold application, or usual care; were assessed with Patient Identification Form and CIPN Assessment Tool at baseline (onset of CIPN during chemotherapy treatment) and week 12 | Home-based progressive strengthening, stretching, and balance exercises occurred 5 times per week, starting the week when the first neuropathy symptom developed to 12 weeks late |
Courneya et al., 2013 [110] | A total of 301 women with stage I-III breast cancer scheduled to receive herceptin or taxane chemotherapy (nPACLITAXEL = 38; (nDOCETAXEL= 202) | Participants were randomized to participate in a standard aerobic exercise group (STAN), high dose aerobic group (HIGH), or combined aerobic and resistance training exercise group (COMB) throughout chemotherapy; were assessed with the Medical Outcomes Survey-Short Form (SF)-36, Functional Assessment of Cancer Therapy-Taxane, and fitness tests at baseline (within 1–2 weeks of starting chemotherapy), periodically during treatment (⅓ and ⅔ through), and post-intervention (3–4 weeks post-chemotherapy completion) | STAN: 25 to 30 min of aerobic exercise HIGH: 50 to 60 min of aerobic exercise COMB: combined dose of 50 to 60 min of aerobic and resistance exercise Exercises were supervised 3 times weekly throughout treatment until 3–4 weeks after chemotherapy (mean length 16.4 weeks) |
Citation | Design | Outcome | |||
---|---|---|---|---|---|
TIPN | Balance Control | Muscle Strength | QoL | ||
Bland et al., 2019 [106] | RCT (n = 27) Supervised aerobic, resistance, and balance training (3 days/week for 8–12 weeks) compared to waitlist control | At cycle 4, significant differences were found in the number of people in the IG and waitlist CG who reported moderate to severe numbness in the toes or feet (nIG = 1 and nWaitlist = 7; p = 0.04) and had impaired vibration sense in the feet (nIG = 2 and nWaitlist = 10, p < 0.01). However, no differences were found at the end of chemotherapy | - | - | Overall quality of life was higher in IG than waitlist control at the end of chemotherapy (p = 0.05), but, by the end of exercise intervention for waitlist control, there were no significant differences between groups (p = 0.29) |
Hammond et al., 2020 [107] | RCT (n = 48) Home-based nerve gliding exercises (3 times daily post-surgery to 6 months post-treatment for 8.25 months) compared to usual care |
| - |
|
|
Vollmers et al., 2018 [108] | RCT (n = 36) General strength, endurance, and sensorimotor training (2 times per week from chemotherapy treatment initiation to 6 weeks after chemotherapy completion) compared to standard care | - |
|
|
|
Şimşek et al., 2021 [109] | 3-group RCT (n = 90) Strength, stretching, and balance training (5 times per week, starting the week when the first neuropathy symptom developed to 12 weeks later) compared to cryotherapy or usual care |
|
| - | - |
Courneya et al., 2013 [110] | 3-Group RCT (n = 301) STAN: 25 to 30 min of aerobic exercise; HIGH: 50 to 60 min of aerobic exercise; COMB: 50 to 60 min of combined aerobic and resistance exercise; (3 days per week throughout treatment until 3–4 weeks after chemotherapy; mean duration 16.4 weeks) |
| - |
| - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shastry, S.; Mizrahi, D.; Kanzawa-Lee, G. The Future of Chemotherapy: The Mechanisms and Benefits of Exercise in Taxane-Induced Peripheral Neuropathy. Physiologia 2023, 3, 563-584. https://doi.org/10.3390/physiologia3040042
Shastry S, Mizrahi D, Kanzawa-Lee G. The Future of Chemotherapy: The Mechanisms and Benefits of Exercise in Taxane-Induced Peripheral Neuropathy. Physiologia. 2023; 3(4):563-584. https://doi.org/10.3390/physiologia3040042
Chicago/Turabian StyleShastry, Sumedha, David Mizrahi, and Grace Kanzawa-Lee. 2023. "The Future of Chemotherapy: The Mechanisms and Benefits of Exercise in Taxane-Induced Peripheral Neuropathy" Physiologia 3, no. 4: 563-584. https://doi.org/10.3390/physiologia3040042
APA StyleShastry, S., Mizrahi, D., & Kanzawa-Lee, G. (2023). The Future of Chemotherapy: The Mechanisms and Benefits of Exercise in Taxane-Induced Peripheral Neuropathy. Physiologia, 3(4), 563-584. https://doi.org/10.3390/physiologia3040042