Response of Superoxide Dismutase (SOD) to Homogeneous and Heterogeneous Food Sources in Bumblebees (Bombus terrestris) and Honeybees (Apis mellifera)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Trap Nests (“Insect Nesting Aids”/“Insect Hotels”) and Places of Installation in Federal State Brandenburg, Germany
2.2. Treatment before and after Overwintering of Trap Nests from Different Sites in the Federal State of Brandenburg, Germany
2.3. Experimental Design for Different Food Sources for Bees
2.4. Bee Collection of Bombus terrestris and Apis mellifera from Phacelia and Flower Mix Plots
2.5. Measuring Superoxide Dismutase (SOD) Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. SOD Activity in Hutched Wild Bee Megachile Rotundata from Different Sites in the Federal State Brandenburg
3.2. Superoxide Dismutase (SOD) Volume Activity (U/mL) in Bombus terrestris and Apis mellifera Collected from Phacelia and from Flower Mix at Berlin-Dahlem
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michener, C.D. The Bees of the World, 2nd ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2007; pp. 1–953. [Google Scholar]
- Westrich, P. Die Wildbienen Deutschlands, 2nd ed.; Eugen Ulmer: Stuttgart, Germany, 2019; p. 824. [Google Scholar]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- van Klink, R.; Bowler, D.; Gongalski, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundance. Science 2020, 368, 417–420. [Google Scholar] [CrossRef] [PubMed]
- González-Varo, J.P.; Biesmeijer, J.C.; Bommarco, R.; Potts, S.G.; Schweiger, O.; Smith, H.G.; Steffan-Dewenter, I.; Szentgyörgyi, H.; Woyciechowski, M.; Vilà, M. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 2013, 28, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, B.F.; Wallace, H.M.; Heard, T.A.; Minden, V.; Klein, A.; Leonhard, S.D. Social bees are fitter in more biodiverse environments. Sci. Rep. 2018, 8, 12353. [Google Scholar] [CrossRef]
- Wood, T.J.; Gibss, J.; Graham, K.K.; Isaacs, R. Narrow pollen diets are associated with declining midwestern bumble bee species. Ecology 2019, 100, e02697. [Google Scholar] [CrossRef]
- Requier, F.; Leonhardt, S.D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 2020, 24, 5–16. [Google Scholar] [CrossRef]
- López-Uribe, M.M.; Ricigliano, V.A.; Simone-Finstrom, M. Defining Pollinator Health: Approach based on ecological, genetic and physiological factors. Annu. Rev. Anim. Biosci. 2020, 8, 269–294. [Google Scholar] [CrossRef]
- Klaus, F.; Tscharntke, T.; Bischof, G.; Grass, I. Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects -evidence from a semi-field experiment. Ecol. Lett. 2021, 24, 668–675. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nojima, Y.; Sakamoto, T.; Iwabuchi, K.; Nakazato, T.; Bono, H.; Toyoda, A.; Fujiyama, A.; Kanost, M.R.; Tabunoki, H. Comparative analysis of seven types of superoxide dismutases for their ability to respond to oxidative stress in Bombyx mori. Sci. Rep. 2019, 9, 2170. [Google Scholar] [CrossRef]
- Sorci, G.; Faivre, B. Inflammation and oxidative stress in vertebrate host–parasite systems. Phil. Trans. R. Soc. B 2009, 364, 71–83. [Google Scholar] [CrossRef]
- Chaitanya, R.K.; Shashank, K.; Sridevi, P. Oxidative Stress in Invertebrate Systems. 2016. Available online: https://www.intechopen.com/books/free-radicals-and-disease (accessed on 1 January 2023).
- Taric, E.; Glavinic, U.; Vejnovic, B.; Stanojkovic, A.; Nevenka Aleksic, N.; Dimitrijevic, V.; Stanimirovic, Z. Oxidative Stress, Endoparasite Prevalence and Social Immunity in Bee Colonies Kept Traditionally vs. Those Kept for Commercial Purposes. Insects 2020, 11, 266. [Google Scholar] [CrossRef] [PubMed]
- Mogren, C.L.; Danka, R.G.; Healy, K.B. Larval pollen stress increases adult susceptibility to Clothianidin in honey bees. Insects 2019, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Haaland, C.; Naisbit, R.E.; Bersier, L.F. Sown wildflower strip for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Hoffmann, M.M.; Renner, S. One-year-old flower strips already support a quarter of a city’s bee species. J. Hymenopt. Res. 2020, 75, 87–95. [Google Scholar] [CrossRef]
- Bommarco, R.; Lindström, S.A.M.; Raderschall, C.A.; Gagic, V.; Lundin, O. Flower strips enhance abundance of bumble bee queens and males in landscapes with few honey bee hives. Biol. Conserv. 2021, 263, 109363. [Google Scholar] [CrossRef]
- Sprague, R.; Boyer, S.; Stevenson, G.M.; Wratten, S.D. Assessing pollinators’ use of floral resource subsidies in agri-environment schemes: An illustration using Phacelia tanacetifolia and honeybees. PeerJ 2016, 4, e2677. [Google Scholar] [CrossRef]
- Staab, M.; Pufal, G.; Tscharntke, T.; Klein, A. Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Ecol. Evol. 2018, 9, 2226–2239. [Google Scholar] [CrossRef]
- Available online: www.wildbienen.info (accessed on 6 March 2023).
- Pitts-Singer, T.L.; Bosch, J. Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures. Environ. Entomol. 2010, 39, 149–158. [Google Scholar] [CrossRef]
- Williams, I.H.; Christian, D.G. Observations on Phacelia tanacetifolia Bentham (Hydrophyllaceae) as a food plant for honey bees and bumble bees. J. Apic. Res. 1991, 30, 3–12. [Google Scholar] [CrossRef]
- Nicolson, S.W. Sweet solutions: Nectar chemistry and quality. Phil. Trans. R. Soc. 2022, 377, 20210163. [Google Scholar] [CrossRef]
- Carnell, J.D.; Hulse, R.A.; Hughes, W.O.H. Chapter Three–A review of nutrition in bumblebees: The effect of caste, life-stage and life history traits. Adv. Insect Physiol. 2020, 59, 71–129. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 2000, 222, 187–209. [Google Scholar] [CrossRef]
- Somerville, D.C.; Nicol, H.I. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Aust. J. Exp. Agric. 2006, 46, 141–149. [Google Scholar] [CrossRef]
- Kleinschmidt, G.J.; Kondos, A.C.; Harden, J.; Turner, J.W. Colony management for eucalypt honey flows. Australas. Beekeep. 1974, 75, 261–264. [Google Scholar]
- Heinrich, P.C.; Löffler, G.; Petrifies, P.E. Biochemie und Pathobiochemie; Springer: Berlin/Heidelberg, Germany, 2006; p. 123. ISBN 978-3-540-32680-9. [Google Scholar]
Site | Geographic Coordinates (φ, λ) | Beeline * from Berlin-Dahlem | Installation Date | Deinstallation Date |
---|---|---|---|---|
Alt Madlitz, | 52.385613, 14.291637 | ~65 km, south east | 15 May 2020 | 17 October 2020 |
Briesen | ||||
Groß Schönebeck, | 52.898738, 13.550597 | ~54 km, north east | 26 June 2020 | 24 October 2020 |
Schorfheide | ||||
Schenkendöbern, | 51.793551, 14.573279 | ~104 km, south east | 12 June 2020 | 10 October 2020 |
Forst |
Site SOD Activity (U/mL) | Alt Madlitz, Briesen | Groß Schönebeck, Schorfheide | Schenkendöbern, Forst | Mean of 3 Sites ± SE |
---|---|---|---|---|
37.96 | 32.25 | 25.59 | ||
18.23 | 9.83 | 31.14 | ||
26.82 | 12.31 | 41.04 | ||
22.75 | 27.88 | 15.83 | ||
18.57 | 34.77 | 29.48 | ||
28.63 | ||||
40.50 | ||||
36.19 | ||||
42.47 | ||||
28.77 | ||||
Mean ± SE | 24.87 a ± 1.81 | 29.36 a ± 3.42 | 28.62 a ± 4.09 | 28.05 ± 2.13 |
Species | B. terrestris | A. mellifera | ||
---|---|---|---|---|
Food Source | Phacelia | Flower Mix | Phacelia | Flower Mix |
33.32 | 116.30 | 31.85 | 27.88 | |
22.61 | 47.97 | 36.19 | 34.77 | |
19.77 | 112.35 | 35.82 | 42.16 | |
9.72 | 94.30 | 42.63 | 41.41 | |
19.53 | 85.41 | 36.19 | 27.79 | |
20.75 | 56.55 | 29.58 | 22.75 | |
23.12 | 78.89 | 48.63 | 29.22 | |
23.44 | 73.98 | 39.08 | 21.71 | |
17.27 | 103.45 | 29.48 | 130.97 | |
21.71 | 112.81 | 22.40 | 140.55 | |
Mean | 21.12 bB | 88.20 aA | 35.19 aA | 51.92 aB |
SE | 1.86 | 7.58 | 2.34 | 14.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludewig, M.J.; Götz, K.-P.; Romero-Oliva, C.S.; Landaverde, P.; Chmielewski, F.-M. Response of Superoxide Dismutase (SOD) to Homogeneous and Heterogeneous Food Sources in Bumblebees (Bombus terrestris) and Honeybees (Apis mellifera). Physiologia 2023, 3, 272-280. https://doi.org/10.3390/physiologia3020019
Ludewig MJ, Götz K-P, Romero-Oliva CS, Landaverde P, Chmielewski F-M. Response of Superoxide Dismutase (SOD) to Homogeneous and Heterogeneous Food Sources in Bumblebees (Bombus terrestris) and Honeybees (Apis mellifera). Physiologia. 2023; 3(2):272-280. https://doi.org/10.3390/physiologia3020019
Chicago/Turabian StyleLudewig, María José, Klaus-Peter Götz, Claudia S. Romero-Oliva, Patricia Landaverde, and Frank-M. Chmielewski. 2023. "Response of Superoxide Dismutase (SOD) to Homogeneous and Heterogeneous Food Sources in Bumblebees (Bombus terrestris) and Honeybees (Apis mellifera)" Physiologia 3, no. 2: 272-280. https://doi.org/10.3390/physiologia3020019