Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection, Data Extraction and Data Synthesis
3. Results
3.1. Search Results
3.2. Bactericidal Effects of Snake Venom PLA2s
3.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Bacterial Strains
4. Discussion
4.1. Strength
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bocian, A.; Hus, K.K. Antibacterial properties of snake venom components. Chem. Pap. 2020, 74, 407–419. [Google Scholar] [CrossRef] [Green Version]
- World Health Organizations. Antimicrobial Resistance. Key Facts. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 11 March 2022).
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cázares-Domínguez, V.; Cruz-Córdova, A.; Ochoa, S.A.; Escalona, G.; Arellano-Galindo, J.; Rodríguez-Leviz, A.; Hernández-Castro, R.; López-Villegas, E.O.; Xicohtencatl-Cortes, J. Vancomycin tolerant, methicillin-resistant Staphylococcus aureus reveals the effects of vancomycin on cell wall thickening. PLoS ONE 2015, 10, e0118791. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.; Frihling, B.; Barros, E.; de Oliveira, C.; Verbisck, N.; Flores, T.; de Freitas Júnior, A.; Franco, O.; de Macedo, M.; Migliolo, L.; et al. Antibiofilm activity of acidic phospholipase isoform isolated from Bothropserythromelas snake venom. Toxins 2020, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, Z.U.; Musa, S.S.; He, D.; Bello, U.M. Antiprotozoal effect of snake venoms and their fractions: A systematic review. Pathogens 2021, 10, 1632. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A review and database of snake venom proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudarshan, S.; Dhananjaya, B.L. Antibacterial activity of an acidic phospholipase A2 (NN-XIb-PLA2) from the venom of Najanaja (Indian cobra). SpringerPlus 2016, 5, 112 . [Google Scholar] [CrossRef] [Green Version]
- Alves, R.d.C.; Vieira Júnior, J.R.; Freire, T.C.; Fonseca, A.S.; Sangi, S.C.; Barbieri, F.D.; Rocha, R.B.; Brito, L.G.; Pereira, S.D.; Luiz, M.B.; et al. Snake venoms and purified toxins as biotechnological tools to control Ralstonia solanacearum. Pesq. Agropec. Bras. 2020, 55, e01756. [Google Scholar] [CrossRef]
- Vargas, L.J.; Londoño, M.; Quintana, J.C.; Rua, C.; Segura, C.; Lomonte, B.; Núñez, V. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2012, 161, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Samy, R.P.; Gopalakrishnakone, P.; Bow, H.; Puspharaj, P.N.; Chow, V.T. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities. Biochimie 2010, 92, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, S.; Dhananjaya, B.L. The antimicrobial activity of an acidic phospholipase A2 (NN-XIa-PLA2) from the venom of Najanajanaja (Indian Cobra). Appl. Biochem. 2015, 176, 2027–2038. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.F.; Dantas, R.T.; Toyama, M.H.; Diz Filho, E.; Zara, F.J.; de Queiroz, M.G.; Nogueira, N.A.; de Oliveira, M.R.; de Oliveira Toyama, D.; Monteiro, H.S.; et al. Antibacterial and antiparasitic effects of Bothropsmarajoensis venom and its fractions: Phospholipase A2 and L-amino acid oxidase. Toxicon 2010, 55, 795–804. [Google Scholar] [CrossRef]
- Samy, R.P.; Kandasamy, M.; Gopalakrishnakone, P.; Stiles, B.G.; Rowan, E.G.; Becker, D.; Shanmugam, M.K.; Sethi, G. Chow VT. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalusadamanteus). PLoS ONE 2014, 9, e80199. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Villarreal, J. Phospholipases A2 purified from cottonmouth snake venoms display no antibacterial effect against four representative bacterial species. Toxicon 2018, 151, 1–4. [Google Scholar] [CrossRef]
- Samy, R.P.; Gopalakrishnakone, P.; Ho, B.; Chow, V.T. Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas). Biochimie 2008, 90, 1372–1388. [Google Scholar] [CrossRef]
- Samy, R.P.; Pachiappan, A.; Gopalakrishnakone, P.; Thwin, M.M.; Hian, Y.E.; Chow, V.T.; Bow, H.; Weng, J.T. In vitro antimicrobial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei. BMC Infect. Dis. 2006, 6, 100. [Google Scholar]
- Samel, M.; Vija, H.; Kurvet, I.; Künnis-Beres, K.; Trummal, K.; Subbi, J.; Kahru, A.; Siigur, J. Interactions of PLA2-s from Viperalebetina, Viperaberusberus and Najanajaoxiana venom with platelets, bacterial and cancer cells. Toxins 2013, 5, 203–223. [Google Scholar] [CrossRef] [Green Version]
- Roberto, P.G.; Kashima, S.; Marcussi, S.; Pereira, J.O.; Astolfi-Filho, S.; Nomizo, A.; Giglio, J.R.; Fontes, M.R.; Soares, A.M.; França, S.C. Cloning and identification of a complete cDNA coding for a bactericidal and antitumoral acidic phospholipase A2 from Bothrops jararacussu venom. Protein J. 2004, 23, 273–285. [Google Scholar] [CrossRef]
- Xu, C.; Ma, D.; Yu, H.; Li, Z.; Liang, J.; Lin, G.; Zhang, Y.; Lai, R. A bactericidal homodimeric phospholipases A2 from Bungarusfasciatus venom. Peptides 2007, 28, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, E.A.; Kayano, A.M.; Diniz-Sousa, R.; Setúbal, S.S.; Zanchi, F.B.; Zuliani, J.P.; Matos, N.B.; Almeida, J.R.; Resende, L.M.; Marangoni, S.; et al. Isolation, structural and functional characterization of a new Lys49 phospholipase A2 homologue from Bothropsneuwiediurutu with bactericidal potential. Toxicon 2016, 115, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Denegri, M.E.; Acosta, O.C.; Huancahuire-Vega, S.; Martins-de-Souza, D.; Marangoni, S.; Maruñak, S.L.; Teibler, G.P.; Leiva, L.C.; Ponce-Soto, L.A. Isolation and functional characterization of a new acidic PLA2 Ba SpII RP4 of the Bothropsalternatus snake venom from Argentina. Toxicon 2010, 56, 64–74. [Google Scholar] [CrossRef]
- Abid, I.; Jemel, I.; Alonazi, M.; Ben Bacha, A. A New Group II Phospholipase A2 from Walterinnesia aegyptia Venom with Antimicrobial, Antifungal, and Cytotoxic Potential. Processes 2020, 8, 1560. [Google Scholar] [CrossRef]
- Barbosa, P.S.; Martins, A.M.; Havt, A.; Toyama, D.O.; Evangelista, J.S.; Ferreira, D.P.; Joazeiro, P.P.; Beriam, L.O.; Toyama, M.H.; Fonteles, M.C.; et al. Renal and antibacterial effects induced by myotoxin I and II isolated from Bothrops jararacussu venom. Toxicon 2005, 46, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Shebl, R.I.; Mohamed, A.F.; Ali, A.E.; Amin, M.A. Antimicrobial profile of selected snake venoms and their associated enzymatic activities. Br. Microbiol Res. J. 2012, 2, 251–263. [Google Scholar] [CrossRef]
- Almeida, J.R.; Lancellotti, M.; Soares, A.M.; Calderón, L.A.; Ramírez, D.; González, W.; Marangoni, S.; Da Silva, S.L. CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: Insights into its structure and biological roles. Toxicon 2016, 120, 147–158. [Google Scholar] [CrossRef]
- Toyama, M.H.; de Oliveira, D.G.; Beriam, L.O.; Novello, J.C.; Rodrigues-Simioni, L.; Marangoni, S. Structural, enzymatic and biological properties of new PLA2 isoform from Crotalusdurissusterrificus venom. Toxicon 2003, 41, 1033–1038. [Google Scholar] [CrossRef]
- Bacha, A.B.; Alonazi, M.A.; Elshikh, M.S.; Karray, A. A novel bactericidal homodimeric PLA2 group-I from Walterinnesiaaegyptia venom. Int. J. Biol. Macromol. 2018, 117, 1140–1146. [Google Scholar] [CrossRef]
- Santamaría, C.; Larios, S.; Quirós, S.; Pizarro-Cerda, J.; Gorvel, J.P.; Lomonte, B.; Moreno, E. Bactericidal and antiendotoxic properties of short cationic peptides derived from a snake venom Lys49 phospholipase A2. Antimicrob. Agents Chemother. 2005, 49, 1340–1345. [Google Scholar] [CrossRef] [Green Version]
- Costa, T.R.; Menaldo, D.L.; Oliveira, C.Z.; Santos-Filho, N.A.; Teixeira, S.S.; Nomizo, A.; Fuly, A.L.; Monteiro, M.C.; de Souza, B.M.; Palma, M.S.; et al. Myotoxic phospholipases A2 isolated from Bothropsbrazili snake venom and synthetic peptides derived from their C-terminal region: Cytotoxic effect on microorganism and tumor cells. Peptides 2008, 29, 1645–1656. [Google Scholar] [CrossRef] [PubMed]
- Nevalainen, T.J.; Graham, G.G.; Scott, K.F. Antibacterial actions of secreted phospholipases A2. Review. Biochim. et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2008, 1781, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicr. Chemother. 2001, 48 (Suppl. S1), 5–16. [Google Scholar] [CrossRef] [Green Version]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [PubMed]
- Barlow, A.; Pook, C.E.; Harrison, R.A.; Wüster, W. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc. R. Soc. B Biol. Sci. 2009, 276, 2443–2449. [Google Scholar] [CrossRef] [Green Version]
- Creer, S.; Malhotra, A.; Thorpe, R.S.; Stöcklin, R.S.; Favreau, P.S.; Hao Chou, W.S. Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J. Mol. Evol. 2003, 56, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Sunagar, K.; Casewell, N.R.; Kochva, E.; Roelants, K.; Scheib, H.; Wüster, W.; Vidal, N.; Young, B.; Burbrink, F.; et al. The origin and evolution of the Toxicofera reptile venom system. In Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery; Fry, B.G., Ed.; Oxford University Press: Oxford, UK, 2015; Volume 2015, pp. 1–31. [Google Scholar]
- Miller, R.A.; Jian, J.; Beno, S.M.; Wiedmann, M.; Kovac, J. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Appl. Environ. Microbiol. 2018, 84, e02479-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikpour, S.; Tabatabaie, F.; Sharifi, I.; Mostafavi, M.; Oliaee, R.T.; Sharifi, F.; Babaei, Z.; Jafari, E.; Salarkia, E.; Shahbazzadeh, D. The fraction of the snake venom, its leishmanicidal effect, and the stimulation of an anti-leishmania response in infected macrophages. Endocr. Metab. Immune Disord. -Drug Targets 2021, 21, 1115–1124. [Google Scholar] [CrossRef]
- Harris, J.B.; Scott-Davey, T. Secreted phospholipases A2 of snake venoms: Effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins 2013, 5, 2533–2571. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, A.; Phan, P.; Datta, J.; Kannan, R.; Thallapuranam, S.K. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins 2021, 13, 372. [Google Scholar] [CrossRef]
- Mora-Obando, D.; Fernandez, J.; Montecucco, C.; Gutiérrez, J.M.; Lomonte, B. Synergism between basic Asp49 and Lys49 phospholipase A2 myotoxins of viperid snake venom in vitro and in vivo. PLoS ONE 2014, 9, e109846. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.A.; Ferreira, R.S.; Barraviera, B.; Carvalho, F.C.; Barros, L.C.; Santos, L.D.; Pimenta, D.C. Crotalusdurissusterrificuscrotapotinnaturally displays preferred positions for aminoacid substitutions. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva Lomeo, R.; de Faria Gonçalves, A.P.; da Silva, C.N.; de Paula, A.T.; Santos, D.O.; Fortes-Dias, C.L.; Gomes, D.A.; de Lima, M.E. Crotoxin from Crotalusdurissusterrificus snake venom induces the release of glutamate from cerebrocorticalsynaptosomes via N and P/Q calcium channels. Toxicon 2014, 85, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Sudharshan, S.; Dhananjaya, B.L. Antibacterial potential of a basic phospholipase A2 (VRV-PL-VIIIa) from Daboia russeliipulchella (Russell’s viper) venom. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, T.A.; Unakal, C.G. Staphylococcus aureus. Stat Pearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441868 (accessed on 18 July 2022).
- Samy, R.P.; Gopalakrishnakone, P.; Stiles, B.G.; Girish, K.S.; Swamy, S.N.; Hemshekhar, M.; Tan, K.S.; Rowan, E.G.; Sethi, G.; Chow, V.T.K. Snake venom phospholipases A2: A novel tool against bacterial diseases. Curr. Med. Chem. 2012, 19, 6150–6162. [Google Scholar] [CrossRef]
- Jami, A.A.; Fathi, B.; Jamshidi, A.; Zolfagharian, H.; Zare, M.A. Investigation of the antibacterial effect of venom of the Iranian snake Echiscarinatus. Iran. J. Vet. Sci Technol. 2010, 2, 93–100. [Google Scholar]
- Mestrovic, T.; Aguilar, G.R.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Weaver, N.D.; Han, C.; Wool, E.E.; Hayoon, A.G.; Hay, S.I.; et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef]
Study | Snake Specie(s) | PLA2s | Bacterial Specie(s) | Activity on Bacterial Strains |
---|---|---|---|---|
Nunes et al. [5] | Bothrops Erythromelas | BE-I- PLA2 | Acinetobacter baumanniii, Staphylococcus aureus, Escherichia coli | Showed bactericidal activity against S. aureus and antibiofilm activity against A. baumanniii. |
Sudarshan et al. [10] | Najanaja | PLA2 (NN-XIb-PLA2) | S. aureus, Bacillus subtilis, E. coli, Vibriocholera, Klebshiella pneumonia, Salmonella typhi | Inhibited the growth of all isolates, but more active on S. aureus and B. subtilis. |
Alves et al. [11] | Crotalusdurissusterrificus | Crotoxin PLA2-Crotoxin B | Ralstonia solanacearum | PLA2-CB showed 52% growth inhibition. |
Vargas et al. [12] | Porthidiumnasutum | PnPLA2 | E. coli (ATCC 25922), S. aureus (ATCC 25923) | Showed bactericidal activity against S. aureus in a dose-dependent manner but not on E. coli. |
Samy et al. [13] | Echiscarinatus | PLA2-EcTX-I | Bulkholderia pseudomallei (KHW and TES), Enterobacter aerogenes, E. coli, Proteus vulgaris, P. mirabilis, P. aeruginosa, S. aureus | Strong bactericidal activity was observed in B. pseudomallei (KHW) and E. aerogenes. It showed only moderate effect on other bacteria. |
Sudarshan et al. [14] | Daboia russelliipulchella | PLA2 fraction V (VRV-PL-V) | S. aureus. B. sub, E. coli, V. cholerae, K. pneumoniae, S. paratyphi | Exhibited bactericidal activity against S. aureus and B. subtilis more than on E. coli, V. cholerae, K.pneumoniae, S. paratyphi |
Torres et al. [15] | B. marajeonsis | BmarPLA2 | P. aeruginosa, S. aureus | Could not promote any inhibitory activity |
Samy et al. [16] | C. adamanteus | PLA2-CaTx-II | S. aureus, B. pseudomallei (KHW), B. pseudomallei (TES), E. coli, K. pneumoniae, Streptococcus pneumoniae, P. vulgaris, P. aeruginosa, E. aerogenes | Resulted in bactericidal effect by forming pores and damaging the cell wall membrane of the bacterial isolates. |
Jia et al. [17] | Agkistrodon piscivorusleucostoma, | PLA2 | B. subtilis, S. aureus, E. coli, V. cholera | A. pleucostoma PLA2 proteins namely AplAsp49 and AplLys49 did not show any bactericidal activity against any of the bacterial isolates. |
Samy et al. [18] | A. halys | PLA2- AgkTx-II | S. aureus, P. vulgaris, P. mirabilis, B. pseudomallei, E. coli, E. aerogenes, B. pseudomallei (TES and KHW), P. aeruginosa | Caused potent bactericidal activity against S. aureus, P. vulgaris, P. mirabilis, and B. pseudomallei with rapid killing effect on S.aureus, P. vulgaris, B. pseudomallei in a dose dependent pattern. It was suggested that the activity was through membrane permeability and damage. |
Samy et al. [19] | C. durissuterrificus, Vipera ammodytes ammodytes, C. scutulatusscutulatus, Bungarusmulticinctus, Oxyuranus scutellatusscutellatus, Pseudechis australis, D. russelli | C.d.t- CA C.d.t-CB V.a.a-a C.s.s-m B.m- β-b O.s.s-t P.a-m D.r-d | B. pseudomallei (KHW), B. pseudomallei (TES) | Presented bactericidal activity which was incriminated to be due to activity of cytotoxin and the PLA2. |
Samel et al. [20] | N. oxiana, Viperalebetina, V. berusberus | NNOPLA2 VLPLA2 VBBPLA2 | B. subtilis, E. coli, Vibrio fishera, S. aureus | Only VBBPLA2 from V. berusberus completely inhibited the growth of B. subtilis. Moreover, the effect of VBBPLA2 was reported to be due to other properties of the protein rather than catalytic activity. To S. aureus, NNOPLA2 (from Najanaja) inhibited its growth and resulted in just a slight inhibition of the growth of B. subtilis. However, none of the three svPLA2s showed inhibitory effect on E. coli even at the highest concentration tried. |
Roberto et al. [21] | B. jararacussu | BthA-I-PLA2 | E. coli (ATCC 29648) S. aureus (ATCC 25923) | Presented bactericidal activity against both bacteria. |
Xu et al. [22] | Bungarusfasciatus | BPFA-PLA2 | E. coli, S. aureus | Showed activity against both bacteria. |
Corrêa et al. [23] | B. neuwiediurutu | BnuTX-I PLA2 | E. coli (ATCC 25922), S. aureus (ATCC 29213), K. pneumoniae (ATCC 13883) P. aeruginosa (ATCC 27853) | Showed bactericidal activity against both Gram-positive and Gram-negative isolates, with greatest inhibitory effect on P. aeruginosa. |
Denegri et al. [24] | B. alternatus | Ba SpII RP4- PLA2 | S. aureus (ATCC 25923), E. coli (ATCC 25922) | Showed no bactericidal activity against the two bacteria. |
Abid et al. [25] | Walterinnesia aegyptia | WaPLA2-I WaPLA2-II | B. subtilis (ATCC 6633), B. cereus (ATCC 14579), E. faecalis (ATCC 29122), S. aureus (ATCC 25923), S. epidermis (ATCC 14990), E. coli (ATCC 25966), K. pneumoniae (ATCC 700603), P. aeruginosa (ATCC 27853), Salmonella enterica (ATCC 43972) | WaPLA2-I presented bactericidal activity against all the gram positive and negative bacteria with the highest activity recorded from E. coli, S. enteric and S. aureus. Lower WaPLA2-II bactericidal effect was recorded from P. aeruginosa. Notably, E. faecalis, S. epidermis, S. aureus, E. coli and S. enteric showed more sensitivity to WaPLA2-II than to WaPLA2-I. Using agar dilution method to determine IC50, WaPLA2-II presented an IC50 of 9 ± 0.2 to 20 ± 1 µg/mL against the human pathogenic strains whereas WaPLA2-I presented 10 ± 0.3 and 17 ± 1.4 µg/mL. Noteworthy is that, WaPLA2-II was more effective than WaPLA2-I against S. epidermis, E. coli, P. aeruginosa, and S. enteric. |
Barbosa et al. [26] | B. jararacussu | BthTX-I BthTX-II | Xanthomonas axonopodispv.passiflorae | Both PLA2 presented bactericidal activity against Gram-negative bacteria. |
Shebl et al. [27] | B. arietans, N. naja, C. cerastes, P. australis, N. nigricolis, V. lebetina, E. carinatus | PLA2s | S. aureus E. coli S. typhimurium P. aeruginosa | The highest PLA2 activity was identified in B. arietans, P. australis, N. naja and N. nigricolis. Moderate effect was recorded from V. lebetina and C. cerastes. N. haje presented the least activity. |
Almeida et al. [28] | C. oreganusabyssus | CoaTX-II | P. aeruginosa (31NM) E. coli (ATCC 25922) S. aureus (BEC 9393) S. aureus (Rib1) | Presented bactericidal activity against P. aeruginosa, E. coli, MRSA S. aureus (Rib1 and BEC9393). |
Toyama et al. [29] | C. durissusterrificus | F15 | X. axonopodis.pv.passiflorae, Claribacter michiganensis michiganensis | Reduced the bactericidal activity of X. axonopodis.pv.passiflorae by up to 58.2% and that of C. michiganensis michiganensis by up to 98%. |
Bacha et al. [30] | Walterinnesiaaegyptia | WaPLA2 | B. cereus, B. subtilis, E. faecalis, S. epidermis, S. aureus, E. coli, K. pneumoniae, P. aeruginosa, S. enteric | Presented highly significant bactericidal activity against all Gram-positive and Gram-negative strains B. cereus, B. subtilis, E. faecalis, S. epidermis, S. aureus, E. coli, K. pneumoniae, P. aeruginosa, S. enteric. |
Santamaría et al. [31] | B. asper, Bothriechis schlegelii, Cerrophidion godmani, Atropoides nummifer | B.a- myt- I, II and III B. s-myt I, C.g-myt- I, II, A.n- myt- I B.a-spo-myt- II | S. typhimurium, S. aureus, Brucella abortus | The eight PLA2myotoxinsincludingL ys49 and Asp49-type isoforms presented bactericidal effect, with an indication that the activity could be due to group IIA PLA2 protein family. In vitro assay for bacterial, cytolytic, and anti-endotoxic effects of the peptides implies a correlation between the number of tryptophan substitutions presented and microbicidal potency, against S. typhimurium and S. aureus. |
Costa et al. [32] | B. brazili | MTX-I MTX-II | E. coli (ATCC 29648) | Showed bactericidal effect. |
Author | Minimum Inhibitory Concentration(s) (MIC) | Minimum Bactericidal Concentration (MBC) | PLA2 Sequence Data |
---|---|---|---|
Nunes et al. [5] | NA | NA | SLVQFETLIMKIAGRSGVWYYGSYGCYCGSG |
Sudarshan et al. [10] | 26.1 ± 3 µg/mL | NA | NA |
21.3 ± 2 µg/mL | |||
23.3 ± 3 µg/mL | |||
25.1 ± 1 µg/mL | |||
19.3 ± 3 µg/mL | |||
21.4 ± 2 µg/mL | |||
Alves et al. [11] | NA | NA | NA |
Vargas et al. [12] | 32 µg/mL | 32 µg/mL | DLLQF-DMMKCC |
DPIA | DPBA | ||
Samy et al. [13] | DPIA | DPBA | SVVELGKMIIQETGKSPFPSYTSYGCFCGG (N) SLLELGKMILQETGKMPSKSYGAYGCNCGVLGR |
120 µg/mL | 18 µg/mL | ||
60 µg/mL | 26 µg/mL | ||
60 µg/mL | 25 µg/mL | ||
30 µg/mL | 2 µg/mL | ||
60 µg/mL | 9 µg/mL | ||
15 µg/mL | 1 µg/mL | ||
60 µg/mL | 22 µg/mL | ||
Sudarshan et al. [14] | 13 ± 2 µg/mL | NA | NA |
12 ± 3 µg/mL | |||
15. ± 1 µg/mL | |||
12. ± 2 µg/mL | |||
14. ± 3 µg/mL | |||
12 ± 3 µg/mL | |||
13 ± 1 µg/mL | |||
Torres et al. [15] | DPIA | DPBA | SLLELGKMILQETGKMPSKSYGAYGCNCGVLGR |
Samy et al. [16] | 7.8 µg/mL | 7.8–15.6 µg/mL | NA |
7.8 µg/mL | 7.8–15.6 µg/mL | ||
15.6 µg/mL | 7.8–15.6 µg/mL | ||
62.5 µg/mL | NA | ||
250 µg/mL | NA | ||
31.25 µg/mL | NA | ||
62.5 µg/mL | NA | ||
31.25 µg/mL | NA | ||
125 µg/mL | NA | ||
Jia et al. [17] | DPIA | DPBA | Apl Lys49 = KK-YKA YFKLKCKK Apl Asp49 = SKTYWK YPKKNCKE |
Samy et al. [18] | 10.63 µM | NA | HLLQFRKMIKKMTGKEPVVSYAFYGCYCGSGGRGKPKD |
21.25 µM | |||
21.25 µM | |||
85 µM | |||
42.5–85 µM | |||
21.25 µM | |||
(KHW)—10.63 µM | |||
85 µM | |||
Samy et al. [19] | Cdt-Cb and CDt-Ca 0.5–0.03125 mg/mL | NA | NA |
Cb and Dt- 0.5–0.03125 mg/mL | |||
V.a-aa, Cs- m, Bm-β-b, P.a-m, O. sst, D.r-d = DPIA | |||
Samel et al. [20] | NA | NA | NA |
Roberto et al. [21] | NA | NA | MRTLWIMAVLLVGVEGSLWQ |
Xu et al. [22] | NA | NA | MNPAHLLVLLAVCVSLLGAA |
Corrêa et al. [23] | NA | NA | SLFELGKMILQETGKNPPAKSYGAYGCNCGVLGRGKPKDATDRCC |
Denegri et al. [24] | NA | NA | DLLQFEGMLKIAGKSGFWYYGAYGCYCGAGGQCTPVDATDRCCQVHDCCYKKTNCN |
Abid et al. [25] | NA | NA | NLQFGMIKLTTGKPEALSYNAYCGWGGQGKPQDATDHCCFVHDCC |
Barbosa et al. [26] | NA | NA | NA |
Shebl et al. [27] | B.a—NA P.a—625 µg/mL N.g—NA N.n.n—625 µg/mL V.l—NA E.c—NA C.c—1250 µg/mL | NA | |
B.a—312.5 µg/mL P.a—156 µg/mL N.g—312.5 µg/mL N.n.n—156 µg/mL V.l—625 µg/mL E.c—625 µg/mL C.c—625 µg/mL | |||
B.a—NA P.a—312.5 µg/mL N.g—625 µg/mL N.n.n—312.5 µg/mL V.l—625 µg/mL E.c—1250 µg/mL C.c—1250 µg/mL | |||
B.a—NA P.a—NA N.g—1250 µg/mL N.n.n—1250 µg/mL V.l—NA E.c—NA C.c—NA | |||
Almeida et al. [28] | NA | NA | SLVELGKMILQETGKNAIPSYGFYGCNCGWGGRGKPKDATDRCCFVHKCC |
Toyama et al. [29] | NA | NA | HLLQFNKMIKFETRKNAVPFYAFYGCYCGWGGQRRPKDATDRCCFVHDCCYGKLTKCNTKWDIYRYSLKSGYITCGKGTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPKSRCRRPSETC |
Bacha et al. [30] | ˃9 µg/mL | NA | NLYQFKNMVQCVGTQLCVAYVKYGCYCGPG |
˃12 µg/mL | |||
˃7 µg/mL | |||
˃12 µg/mL | |||
˃5 µg/mL | |||
˃7 µg/mL | |||
˃8 µg/mL | |||
˃10 µg/mL | |||
˃9 µg/mL | |||
Santamaría et al. [31] | NA | NA | KKWRWWLKALAKK |
Costa et al. [32] | NA | NA | MTX-I = SLWEFGQMIIKETGKLPFPYYGAYGCYCGWGGRRGPKDATDRCCYVHDC MTX-II = SLFQLGKMILQETGKNPAASYGAYGCNCGVLGRGKPKDATDRCCYVHKC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullahi, Z.U.; Musa, S.S.; Abu-Odah, H.; Ahmed, A.; Lawan, A.A.; Bello, U.M. Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration. Physiologia 2023, 3, 30-42. https://doi.org/10.3390/physiologia3010003
Abdullahi ZU, Musa SS, Abu-Odah H, Ahmed A, Lawan AA, Bello UM. Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration. Physiologia. 2023; 3(1):30-42. https://doi.org/10.3390/physiologia3010003
Chicago/Turabian StyleAbdullahi, Zainab Umar, Salihu Sabiu Musa, Hammoda Abu-Odah, Ayman Ahmed, Abdulmalik Ahmad Lawan, and Umar Muhammad Bello. 2023. "Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration" Physiologia 3, no. 1: 30-42. https://doi.org/10.3390/physiologia3010003
APA StyleAbdullahi, Z. U., Musa, S. S., Abu-Odah, H., Ahmed, A., Lawan, A. A., & Bello, U. M. (2023). Bactericidal Effects of Snake Venom Phospholipases A2: A Systematic Review and Analysis of Minimum Inhibitory Concentration. Physiologia, 3(1), 30-42. https://doi.org/10.3390/physiologia3010003