SARS-CoV-2 Detection Rates from Surface Samples Do Not Implicate Public Surfaces as Relevant Sources for Transmission
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Areas Surrounding Confirmed COVID-19 Cases in Healthcare Settings
3.2. Areas Surrounding Confirmed COVID-19 Cases in Non-Healthcare Settings
3.3. Public Surfaces
3.4. Personal Protective Equipment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J. 2020, 17, 145. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Eccles, R. Respiratory mucus and persistence of virus on surfaces. J. Hosp. Infect. 2020, 105, 350. [Google Scholar] [CrossRef] [PubMed]
- Goldman, E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect. Dis. 2020, 20, 892–893. [Google Scholar] [CrossRef]
- Zhou, J.; Otter, J.A.; Price, J.R.; Cimpeanu, C.; Garcia, D.M.; Kinross, J.; Boshier, P.R.; Mason, S.; Bolt, F.; Holmes, A.H.; et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin. Infect. Dis. 2021, 72. [Google Scholar] [CrossRef]
- Ahn, J.Y.; An, S.; Sohn, Y.; Cho, Y.; Hyun, J.H.; Baek, Y.J.; Kim, M.H.; Jeong, S.J.; Kim, J.H.; Ku, N.S.; et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J. Hosp. Infect. 2020, 106, 570–576. [Google Scholar] [CrossRef]
- Kampf, G.; Lemmen, S.; Suchomel, M. Ct values and infectivity of SARS-CoV-2 on surfaces. Lancet Infect. Dis 2021, 21. [Google Scholar] [CrossRef]
- Marotz, C.; Belda-Ferre, P.; Ali, F.; Das, P.; Huang, S.; Cantrel, K.; Jiang, L.; Martino, C.; Diner, R.; Rahman, G.; et al. Microbial context predicts SARS-CoV-2 prevalence in patients and the hospital built environment. medRxiv 2020. [Google Scholar] [CrossRef]
- Ye, G.; Lin, H.; Chen, S.; Wang, S.; Zeng, Z.; Wang, W.; Zhang, S.; Rebmann, T.; Li, Y.; Pan, Z.; et al. Environmental contamination of SARS-CoV-2 in healthcare premises. J. Infect. 2020, 81, e1–e5. [Google Scholar] [CrossRef]
- Abrahão, J.S.; Sacchetto, L.; Rezende, I.M.; Rodrigues, R.A.L.; Crispim, A.P.C.; Moura, C.; Mendonça, D.C.; Reis, E.; Souza, F.; Oliveira, G.F.G.; et al. Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of brazil: A potential tool for monitoring the circulation of infected patients. Sci. Total Environ. 2021, 766, 142645. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.; Rickard, H.; Stevenson, D.; Aranega-Bou, P.; Pitman, J.; Crook, A.; Davies, K.; Spencer, A.; Burton, C.; Easterbrook, L.; et al. Detection of SARS-CoV-2 within the healthcare environment: A multi-centre study conducted during the first wave of the COVID-19 outbreak in england. J. Hosp. Infect. 2021, 108, 189–196. [Google Scholar] [CrossRef]
- Zhou, L.; Yao, M.; Zhang, X.; Hu, B.; Li, X.; Chen, H.; Zhang, L.; Liu, Y.; Du, M.; Sun, B.; et al. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J. Aerosol Sci. 2020, 152, 105693. [Google Scholar] [CrossRef] [PubMed]
- Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 2020, 11, 2800. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Jin, X.; Tian, J.; Liu, J.; Mao, Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am. J. Infect. Control 2020, 48, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Lee, P.H.; Tan, Y.K.; Ling, L.M.; Ho, B.C.H.; Ng, C.G.; Wang, D.L.; Tan, B.H.; Leo, Y.S.; Ng, O.T.; et al. Environmental contamination in a COVID-19 intensive care unit (ICU)—What is the risk? Infect. Control Hosp. Epidemiol. 2021, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, X.H.; Long, X.B.; Lu, X.; Liu, Z. An environmental study of tracheostomy on eight COVID-19 patients. J. Otolaryngol. Head Neck Surg. 2021, 50, 3. [Google Scholar] [CrossRef]
- Lei, H.; Ye, F.; Liu, X.; Huang, Z.; Ling, S.; Jiang, Z.; Cheng, J.; Huang, X.; Wu, Q.; Wu, S.; et al. SARS-CoV-2 environmental contamination associated with persistently infected COVID-19 patients. Influenza Other Respir. Viruses 2020, 14, 688–699. [Google Scholar] [CrossRef]
- Guo, Z.D.; Wang, Z.Y.; Zhang, S.F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1583–1591. [Google Scholar] [CrossRef]
- Ryu, B.H.; Cho, Y.; Cho, O.H.; Hong, S.I.; Kim, S.; Lee, S. Environmental contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea. Am. J. Infect. Control 2020, 48, 875–879. [Google Scholar] [CrossRef]
- Wang, H.; Mo, P.; Li, G.; Chen, P.; Liu, J.; Wang, H.; Wang, F.; Zhang, Y.; Zhao, Q. Environmental virus surveillance in the isolation ward of COVID-19. J. Hosp. Infect. 2020, 105, 373–374. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, D.Y.; Lee, W.G.; Kang, B.; Jang, Y.S.; Ryu, B.; Lee, S.; Bahk, H.; Lee, E. Detection of novel coronavirus on the surface of environmental materials contaminated by COVID-19 patients in the Republic of Korea. Osong Public Health Res. Perspect. 2020, 11, 128–132. [Google Scholar] [CrossRef]
- Escudero, D.; Boga, J.A.; Fernández, J.; Forcelledo, L.; Balboa, S.; Albillos, R.; Astola, I.; García-Prieto, E.; Álvarez-Argüelles, M.E.; Martín, G.; et al. SARS-CoV-2 analysis on environmental surfaces collected in an intensive care unit: Keeping ernest shackleton’s spirit. Intensive Care Med. Exp. 2020, 8, 68. [Google Scholar] [CrossRef]
- Ben-Shmuel, A.; Brosh-Nissimov, T.; Glinert, I.; Bar-David, E.; Sittner, A.; Poni, R.; Cohen, R.; Achdout, H.; Tamir, H.; Yahalom-Ronen, Y.; et al. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin. Microbiol. Infect. 2020, 26, 1658–1662. [Google Scholar] [CrossRef]
- Wang, J.; Feng, H.; Zhang, S.; Ni, Z.; Ni, L.; Chen, Y.; Zhuo, L.; Zhong, Z.; Qu, T. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the coronavirus disease 2019 outbreak in a chinese hospital. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 94, 103–106. [Google Scholar]
- Dargahi, A.; Jeddi, F.; Vosoughi, M.; Karami, C.; Hadisi, A.; Ahamad Mokhtari, S.; Ghobadi, H.; Alighadri, M.; Haghighi, S.B.; Sadeghi, H. Investigation of SARS-CoV-2 virus in environmental surface. Environ. Res. 2021, 195, 110765. [Google Scholar] [CrossRef] [PubMed]
- Piana, A.; Colucci, M.E.; Valeriani, F.; Marcolongo, A.; Sotgiu, G.; Pasquarella, C.; Margarucci, L.M.; Petrucca, A.; Gianfranceschi, G.; Babudieri, S.; et al. Monitoring COVID-19 transmission risks by quantitative real-time pcr tracing of droplets in hospital and living environments. mSphere 2021, 6. [Google Scholar] [CrossRef]
- Hu, X.; Ni, W.; Wang, Z.; Ma, G.; Pan, B.; Dong, L.; Gao, R.; Jiang, F. The distribution of SARS-CoV-2 contamination on the environmental surfaces during incubation period of COVID-19 patients. Ecotoxicol. Environ. Saf. 2020, 208, 111438. [Google Scholar] [CrossRef] [PubMed]
- Orenes-Piñero, E.; Baño, F.; Navas-Carrillo, D.; Moreno-Docón, A.; Marín, J.M.; Misiego, R.; Ramírez, P. Evidences of SARS-CoV-2 virus air transmission indoors using several untouched surfaces: A pilot study. Sci. Total Environ. 2021, 751, 142317. [Google Scholar] [CrossRef] [PubMed]
- Elbadawy, H.M.; Khattab, A.; Alalawi, A.; Dakilallah Aljohani, F.; Sundogji, H.; Mahmoud, A.S.; Abouzied, M.; Eltahir, H.M.; Alahmadey, Z.; Bahashwan, S.; et al. The detection of SARS-CoV-2 in outpatient clinics and public facilities during the COVID-19 pandemic. J. Med. Virol. 2021, 93, 2955–2961. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Seminari, E.; Piralla, A.; Zuccaro, V.; Filippo, A.D.; Baldanti, F.; Bruno, R.; Mondelli, M.U. Lack of SARS-CoV-2 RNA environmental contamination in a tertiary referral hospital for infectious diseases in northern Italy. J. Hosp. Infect. 2020, 105, 474–476. [Google Scholar] [CrossRef][Green Version]
- Yung, C.F.; Kam, K.Q.; Wong, M.S.Y.; Maiwald, M.; Tan, Y.K.; Tan, B.H.; Thoon, K.C. Environment and personal protective equipment tests for SARS-CoV-2 in the isolation room of an infant with infection. Ann. Intern. Med. 2020, 173, 240–242. [Google Scholar] [CrossRef][Green Version]
- Cheng, V.C.C.; Wong, S.C.; Chen, J.H.K.; Yip, C.C.Y.; Chuang, V.W.M.; Tsang, O.T.Y.; Sridhar, S.; Chan, J.F.W.; Ho, P.L.; Yuen, K.Y. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect. Control Hosp. Epidemiol. 2020, 41, 493–498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang En Ian, W.; Sim, X.Y.J.; Conceicao, E.P.; Aung, M.K.; Tan, K.Y.; Ko, K.K.K.; Wong, H.M.; Wijaya, L.; Tan, B.H.; Venkatachalam, I.; et al. Containing COVID-19 outside the isolation ward: The impact of an infection control bundle on environmental contamination and transmission in a cohorted general ward. Am. J. Infect. Control 2020, 48, 1056–1061. [Google Scholar]
- Cheng, V.C.; Wong, S.C.; Chan, V.W.; So, S.Y.; Chen, J.H.; Yip, C.C.; Chan, K.H.; Chu, H.; Chung, T.W.; Sridhar, S.; et al. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect. Control Hosp. Epidemiol. 2020, 41, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.J.; Lee, S.Y.; Lee, J.Y.; Lee, A.; Kim, S.E.; Choi, O.J.; Lee, J.S.; Kee, S.J.; Jang, H.C. Air and environmental contamination caused by COVID-19 patients: A multi-center study. J. Korean Med. Sci. 2020, 35, e332. [Google Scholar] [CrossRef]
- Tan, L.; Ma, B.; Lai, X.; Han, L.; Cao, P.; Zhang, J.; Fu, J.; Zhou, Q.; Wei, S.; Wang, Z.; et al. Air and surface contamination by SARS-CoV-2 virus in a tertiary hospital in Wuhan, China. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 99, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Su, W.L.; Hung, P.P.; Lin, C.P.; Chen, L.K.; Lan, C.C.; Yang, M.C.; Peng, M.Y.; Chao, Y.C. Masks and closed-loop ventilators prevent environmental contamination by COVID-19 patients in negative-pressure environments. J. Microbiol. Immunol. Infect. 2020, 54, 81–84. [Google Scholar] [CrossRef]
- Shah, M.R.; Jan, I.; Johns, J.; Singh, K.; Kumar, P.; Belarmino, N.; Saggiomo, K.J.; Hayes, C.; Washington, K.; Toppmeyer, D.L.; et al. SARS-CoV-2 nosocomial infection: Real-world results of environmental surface testing from a large tertiary cancer center. Cancer 2021. [Google Scholar] [CrossRef] [PubMed]
- Mouchtouri, V.A.; Koureas, M.; Kyritsi, M.; Vontas, A.; Kourentis, L.; Sapounas, S.; Rigakos, G.; Petinaki, E.; Tsiodras, S.; Hadjichristodoulou, C. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health 2020, 230, 113599. [Google Scholar] [CrossRef]
- Jerry, J.; O’Regan, E.; O’Sullivan, L.; Lynch, M.; Brady, D. Do established infection prevention and control measures prevent spread of SARS-CoV-2 to the hospital environment beyond the patient room? J. Hosp. Infect. 2020, 105, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Seminari, E.; Novati, S.; Asperges, E.; Biscarini, S.; Piralla, A.; Percivalle, E.; Cassaniti, I.; Baldanti, F.; Bruno, R.; et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin. Microbiol. Infect. 2020, 26, 1094.e1091–1094.e1095. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Lin, J.; Duan, X.; Huang, W.; Lu, X.; Zhou, J.; Zong, Z. Asymptomatic COVID-19 patients can contaminate their surroundings: An environment sampling study. mSphere 2020, 5, e00442-20. [Google Scholar] [CrossRef] [PubMed]
- D’Accolti, M.; Soffritti, I.; Passaro, A.; Zuliani, G.; Antonioli, P.; Mazzacane, S.; Manfredini, R.; Caselli, E. SARS-CoV-2 RNA contamination on surfaces of a COVID-19 ward in a hospital of northern Italy: What risk of transmission? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9202–9207. [Google Scholar] [PubMed]
- Lomont, A.; Boubaya, M.; Khamis, W.; Deslandes, A.; Cordel, H.; Seytre, D.; Alloui, C.; Malaure, C.; Bonnet, N.; Carbonnelle, E.; et al. Environmental contamination related to SARS-CoV-2 in ICU patients. ERJ Open Res. 2020, 6. [Google Scholar] [CrossRef]
- Peyrony, O.; Ellouze, S.; Fontaine, J.P.; Thegat-Le Cam, M.; Salmona, M.; Feghoul, L.; Mahjoub, N.; Mercier-Delarue, S.; Gabassi, A.; Delaugerre, C.; et al. Surfaces and equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the emergency department at a university hospital. Int. J. Hyg. Environ. Health 2020, 230, 113600. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef][Green Version]
- Hofmaenner, D.A.; Wendel Garcia, P.D.; Duvnjak, B.; Chakrakodi, B.; Maier, J.D.; Huber, M.; Huder, J.; Wolfensberger, A.; Schreiber, P.W.; Schuepbach, R.A.; et al. Bacterial but no SARS-CoV-2 contamination after terminal disinfection of tertiary care intensive care units treating COVID-19 patients. Antimicrob. Resist. Infect. Control 2021, 10, 11. [Google Scholar] [CrossRef]
- Yamagishi, T.; Ohnishi, M.; Matsunaga, N.; Kakimoto, K.; Kamiya, H.; Okamoto, K.; Suzuki, M.; Gu, Y.; Sakaguchi, M.; Tajima, T.; et al. Environmental sampling for severe acute respiratory syndrome coronavirus 2 during a COVID-19 outbreak on the diamond princess cruise ship. J. Infect. Dis. 2020, 222, 1098–1102. [Google Scholar] [CrossRef]
- Döhla, M.; Wilbring, G.; Schulte, B.; Kümmerer, B.M.; Diegmann, C.; Sib, E.; Richter, E.; Haag, A.; Engelhart, S.; Eis-Hübinger, A.M.; et al. SARS-CoV-2 in environmental samples of quarantined households. medRxiv 2020. [Google Scholar] [CrossRef]
- Wong, J.C.C.; Hapuarachchi, H.C.; Arivalan, S.; Tien, W.P.; Koo, C.; Mailepessov, D.; Kong, M.; Nazeem, M.; Lim, M.; Ng, L.C. Environmental contamination of SARS-CoV-2 in a non-healthcare setting. Int. J. Environ. Res. Public Health 2020, 18, 117. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; He, Z.; Yang, Z.; Yuan, J.; Wu, H.; Zhu, P.; Fu, X.; Lin, Y.; Zhang, Y.; et al. Duration of SARS-CoV-2 positive in quarantine room environments: A perspective analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 105, 68–74. [Google Scholar]
- Bloise, I.; Gómez-Arroyo, B.; García-Rodríguez, J. Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory. J. Hosp. Infect. 2020, 105, 784–786. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.C.; Jiang, X.L.; Wang, Z.G.; Meng, Z.H.; Shao, S.F.; Anderson, B.D.; Ma, M.J. Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. Emerg. Infect. Dis. 2020, 26, 2162–2164. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.P.; Fuhrmeister, E.R.; Cantrell, M.E.; Pitol, A.K.; Swarthout, J.M.; Powers, J.E.; Nadimpalli, M.L.; Julian, T.R.; Pickering, A.J. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. Environ. Sci. Technol. Lett. 2021, 8, 168–175. [Google Scholar] [CrossRef]
- Gholipour, S.; Nikaeen, M.; Mohammadi Manesh, R.; Aboutalebian, S.; Shamsizadeh, Z.; Nasri, E.; Mirhendi, H. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contamination of high-touch surfaces in field settings. Biomed. Environ. Sci. BES 2020, 33, 925–929. [Google Scholar] [PubMed]
- Akter, S.; Roy, P.C.; Ferdaus, A.; Ibnat, H.; Alam, A.; Nigar, S.; Jahid, I.K.; Hossain, M.A. Prevalence and stability of SARS-CoV-2 RNA on Bangladeshi banknotes. Sci. Total Environ. 2021, 779, 146133. [Google Scholar] [CrossRef]
- Gavaldà-Mestre, L.; Ramírez-Tarruella, D.; Gutiérrez-Milla, C.; Guillamet-Roig, F.; Orriols-Ramos, R.; Tisner, S.R.; Pàrraga-Niño, N. Nondetection of SARS-CoV-2 on high-touch surfaces of public areas next to COVID-19 hospitalization units. Am. J. Infect. Control 2021. [Google Scholar] [CrossRef]
- Kozer, E.; Rinott, E.; Kozer, G.; Bar-Haim, A.; Benveniste-Levkovitz, P.; Klainer, H.; Perl, S.; Youngster, I. Presence of SARS-CoV-2 RNA on playground surfaces and water fountains. Epidemiol. Infect. 2021, 149, e67. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.Y.; Bae, S.; Cha, H.H.; Kim, E.O.; Kim, M.J.; Kim, S.H. Contamination of personal protective equipment by SARS-CoV-2 during routine care of patients with mild COVID-19. J. Infect. 2020, 81, e165–e167. [Google Scholar] [CrossRef]
- Ong, S.W.X.; Tan, Y.K.; Sutjipto, S.; Chia, P.Y.; Young, B.E.; Gum, M.; Lau, S.K.; Chan, M.; Vasoo, S.; Mendis, S.; et al. Absence of contamination of personal protective equipment (PPE) by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infect. Control Hosp. Epidemiol. 2020, 41, 614–616. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wei, L.; Huang, W.; Lu, X.; Wang, Y.; Cheng, L.; Deng, R.; Long, H.; Zong, Z. Contamination of SARS-CoV-2 in patient surroundings and on personal protective equipment in a non-ICU isolation ward for COVID-19 patients with prolonged pcr positive status. Antimicrob. Resist. Infect. Control 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Chakladar, A.; Jones, C.G.; Siu, J.; Hassan-Ibrahim, M.O.; Khan, M. Microbial contamination of powered air purifying respirators (PAPR) used by healthcare staff during the COVID-19 pandemic: An in situ microbiological study. Am. J. Infect. Control 2021. [Google Scholar] [CrossRef] [PubMed]
- WHO. Infection Prevention and Control during Health Care When Novel Coronavirus (NCOV) Infection Is Suspected. Interim Guidance. 19 March 2020. Available online: https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125 (accessed on 16 April 2020).
- Simmerman, J.M.; Suntarattiwong, P.; Levy, J.; Gibbons, R.V.; Cruz, C.; Shaman, J.; Jarman, R.G.; Chotpitayasunondh, T. Influenza virus contamination of common household surfaces during the 2009 influenza a (H1N1) pandemic in Bangkok, Thailand: Implications for contact transmission. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 51, 1053–1061. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Killingley, B.; Greatorex, J.; Digard, P.; Wise, H.; Garcia, F.; Varsani, H.; Cauchemez, S.; Enstone, J.E.; Hayward, A.; Curran, M.D.; et al. The environmental deposition of influenza virus from patients infected with influenza a (H1N1)pdm09: Implications for infection prevention and control. J. Infect. Public Health 2016, 9, 278–288. [Google Scholar] [CrossRef] [PubMed]
- CDC. Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments. 5 April 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html (accessed on 5 May 2020).
- Pitol, A.K.; Julian, T.R. Community transmission of SARS-CoV-2 by surfaces: Risks and risk reduction strategies. Environ. Sci. Technol. Lett. 2021, 8, 263–269. [Google Scholar] [CrossRef]
- Wilson, A.M.; Weir, M.H.; Bloomfield, S.F.; Scott, E.A.; Reynolds, K.A. Modeling COVID-19 infection risks for a single hand-to-fomite scenario and potential risk reductions offered by surface disinfection. Am. J. Infect. Control 2020. [Google Scholar] [CrossRef]
- Wolfel, R.; Corman, V.M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Muller, M.A.; Niemeyer, D.; Jones, T.C.; Vollmar, P.; Rothe, C.; et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465–469. [Google Scholar] [CrossRef][Green Version]
- To, K.K.; Tsang, O.T.; Leung, W.S.; Tam, A.R.; Wu, T.C.; Lung, D.C.; Yip, C.C.; Cai, J.P.; Chan, J.M.; Chik, T.S.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 20, 565–574. [Google Scholar] [CrossRef][Green Version]
- Weber, D.J.; Anderson, D.; Rutala, W.A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 2013, 26, 338–344. [Google Scholar] [CrossRef]
- WHO. Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19. Interim Guidance. 19 May 2020. Available online: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-inthe-context-of-COVID-19 (accessed on 18 August 2020).
- CDC. Cleaning and Disinfection for Community Facilities. Interim Recommendations for U.S. Community Facilities with Suspected/Confirmed Coronavirus Disease 2019 (COVID-19). 27 May 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/organizations/cleaning-disinfection.html (accessed on 18 August 2020).
- Robert Koch-Institut. Hinweise zu Reinigung und Desinfektion von Oberflächen Außerhalb von Gesundheitseinrichtungen im Zusammenhang Mit der COVID-19-Pandemie. Available online: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Reinigung_Desinfektion.html (accessed on 4 April 2020).
- Dick, E.C.; Jennings, L.C.; Mink, K.A.; Wartgow, C.D.; Inhorn, S.L. Aerosol transmission of rhinovirus colds. J. Infect. Dis. 1987, 156, 442–448. [Google Scholar] [CrossRef]
- Ansari, S.A.; Springthorpe, V.S.; Sattar, S.A.; Rivard, S.; Rahman, M. Potential role of hands in the spread of respiratory viral infections: Studies with human parainfluenza virus 3 and rhinovirus 14. J. Clin. Microbiol. 1991, 29, 2115–2119. [Google Scholar] [CrossRef][Green Version]
- Wilson, A.M.; Reynolds, K.A.; Sexton, J.D.; Canales, R.A. Modeling surface disinfection needs to meet microbial risk reduction targets. Appl. Environ. Microbiol. 2018, 84, e00709–e00718. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of respiratory viral infections. Ann. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.H.; Yinda, K.C.; Gamble, A.; Rossine, F.W.; Huang, Q.; Bushmaker, T.; Fischer, R.J.; Matson, M.J.; Van Doremalen, N.; Vikesland, P.J.; et al. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. eLife 2021, 10, e65902. [Google Scholar] [CrossRef]
- Jefferson, T.; Del Mar, C.; Dooley, L.; Ferroni, E.; Al-Ansary, L.A.; Bawazeer, G.A.; van Driel, M.L.; Foxlee, R.; Rivetti, A. Physical interventions to interrupt or reduce the spread of respiratory viruses: Systematic review. BMJ Clin. Res. 2009, 339, b3675. [Google Scholar] [CrossRef][Green Version]
- Malenovská, H. Coronavirus persistence on a plastic carrier under refrigeration conditions and its reduction using wet wiping technique, with respect to food safety. Food Environ. Virol. 2020, 12, 1–6. [Google Scholar] [CrossRef]
- Cutts, T.A.; Robertson, C.; Theriault, S.S.; Nims, R.W.; Kasloff, S.B.; Rubino, J.R.; Ijaz, M.K. Assessing the contributions of inactivation, removal, and transfer of ebola virus and vesicular stomatitis virus by disinfectant pre-soaked wipes. Front. Public Health 2020, 8, 183. [Google Scholar] [CrossRef] [PubMed]
- Mahnert, A.; Moissl-Eichinger, C.; Zojer, M.; Bogumil, D.; Mizrahi, I.; Rattei, T.; Martinez, J.L.; Berg, G. Man-made microbial resistances in built environments. Nat. Commun. 2019, 10, 968. [Google Scholar] [CrossRef][Green Version]
- Tun, M.H.; Tun, H.M.; Mahoney, J.J.; Konya, T.B.; Guttman, D.S.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Subbarao, P.; Sears, M.R.; et al. Postnatal exposure to household disinfectants, infant gut microbiota and subsequent risk of overweight in children. Can. Med. Assoc. J. 2018, 190, e1097–e1107. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the eu and the european economic area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2018, 19, 56–66. [Google Scholar] [CrossRef][Green Version]
- Kampf, G. Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Chang, A.; Schnall, A.H.; Law, R.; Bronstein, A.C.; Marraffa, J.M.; Spiller, H.A.; Hays, H.L.; Funk, A.R.; Mercurio-Zappala, M.; Calello, D.P.; et al. Cleaning and Disinfectant Chemical Exposures and Temporal Associations with COVID-19-National Poison Data System, United States, 1 January 2020–31 March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 496–498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McNamara, P.J.; Levy, S.B. Triclosan: An instructive tale. Antimicrob. Agents Chemother. 2016, 60, 7015–7016. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, Y.; Li, T.; Deng, Y.; Liu, S.; Zhang, D.; Li, H.; Wang, X.; Jia, L.; Han, J.; Bei, Z.; et al. Stability of SARS-CoV-2 on environmental surfaces and in human excreta. J. Hosp. Infect. 2020, 107, 105–107. [Google Scholar] [CrossRef]
Setting (Country) | Types of Sampled Surfaces (n) | Evidence for Infectious Virus in Samples from Cases (Ct Values of Clinical Samples) | Targets on SARS-CoV-2 Genome | Sample Considered Positive with Ct Value of | Proportion of Viral RNA Detection | Ct Values | Reference |
---|---|---|---|---|---|---|---|
Hospital with COVID-19 patients (USA) | Surfaces in the patient surrounding (734) | No * (no Ct values) | E and N genes | <40 | 13.1% | Not specified; 102–105 viral copies detected in positive samples | [9] |
Different wards in grade III hospital (China) | Surfaces on different wards (626) | No | ORF1ab and N genes | <40 | 13.6% | Not described | [10] |
Dedicated general ward for COVID-19 cases (Singapore) | Various high-touch surfaces in the patient surroundings and toilet area (445) | No * (no Ct values) | E and ORF1b-nsp14 genes | Not described | 2.2% | Not described | [34] |
Various healthcare settings (Brazil) | Various surfaces (403) | No | N1 and N2 genes | <40 | 5.0% | 23.3–37.7 (N1) and 22.2–39.4 (N2) | [11] |
COVID-19 isolation rooms (China) | Surfaces in patient rooms (377) | No | RdRp gene | Not described | 5.0% | 1.1 × 102–9.4 × 104 RNA copies per ml | [35] |
Treatment rooms for COVID-19 patients (England) | High contact surfaces in patient rooms (336) | No * (17.7 and 21.4; 2 of 44 Ct values) | RdRp, N, ORF1ab, and E genes | <40 | 8.9% ** | 28.8–39.1 | [12] |
Rooms of COVID-19 patients in four hospitals (Republic of Korea) | Various surfaces (330) | No | RdRp and E genes | <35 | 27.0% | 25–39; values < 30 only on bedside rail (2 samples), sink internal bowel (1 sample), floor (1 sample), and bathroom door handle (1 sample) | [36] |
Four hospitals with COVID-19 patients (China) | Various surfaces (318) | No | ORFab and N genes | <40 | 3.1% | 3–8 RNA copies per cm2 | [13] |
Surfaces in 27 hospital rooms of COVID-19 patients (Singapore) | Various surfaces (245) | No * (20.4–35.7) | ORF1ab and E genes | ≤45 | 22.9% | Not described | [14] |
Designated COVID-19 hospital (China) | Various surfaces in isolation wards and ICUs (244) | No | ORF1ab gene | Not specified | 4.1% | Not specified | [37] |
Teaching hospital with COVID-19 patients (UK) | Various surfaces in different parts of the hospital (218) | No | E gene | <40.4 | 10.6% ** | Not specified; 101–104 genome copies detected in positive samples | [6] |
COVID-19 hospital (China) | Surfaces frequently touched by patients or healthcare workers (200) | No | RdRp, N, and E genes | ≤43 | 19.0% | Not described | [15] |
COVID-19 ICU (Singapore) | Various surfaces in 20 patient rooms (200) | No * (23.1–39.0) | ORF1ab and E genes | <45 | 14.0% | Not described | [16] |
Emergency department (France) | Different surfaces from the patient care area (102) and the non-patient care area (74) | No | ORF1ab and E genes | Not described | 5.1% *** | 35.7–39.7 | [46] |
ICU with COVID-19 patients (Switzerland) | Different surfaces in patient rooms after terminal disinfection (176) | No | Not described | Not described | 0% | - | [48] |
COVID-19 treatment centre for patients after tracheostomy (China) | Various surfaces (152) | No | ORF1ab and NP genes | <40 | 1.3% | 36.8–37.5 | [17] |
Intensive care unit and ordinary ward with COVID-19 cases (Taiwan) | Samples from 16 different surfaces (144) | No | RdRp, N, and E genes | <45 | 1.4% | 30.4, 31.8 | [38] |
Designated COVID-19 hospital (China) | Various surfaces on isolation ward (144) | No | ORF1 and N genes | <40 <45 | 0.7% 2.8% | 38.6 41.0–44.8 | [18] |
Contaminated, semi-contaminated, and clean areas of an ICU with COVID-19 patients (China) | Floor (53) Doorknob (34) Air outlet filter (18) Sickbed handrail (14) Computer mouse (8) Trash can (5) | No | ORF1ab and N genes | Not described | 17.0% (7.5% ****) 0% 44.4% (22.2% ****) 43% (29% ****) 75% (25% ****) 60% (60% ****) | No Ct values described; average RNA concentration between 2.9 × 103 and 1.5 × 105 | [19] |
ICU with COVID-19 patients (France) | Various frequently touched surfaces (117) | No * (no Ct values) | E gene | Not described | 24.8% | 29.0–39.0 (median: 36) | [45] |
COVID-19 isolation ward (China) | Surfaces in patient rooms and the toilet area (112) | No * (no Ct values) | ORF1ab and N genes | Not described | 39.3% | Not described | [43] |
Intensive care unit, isolation ward, and general ward (Republic of Korea) | Surfaces in patient rooms, the ante room, the floor of an adjacent common corridor, and the nursing station (105) | No | RdRp, N, and E genes Only two of the genes positive Only one of the genes positive | Not described | 3.8% 4.8% 3.8% | Not described | [20] |
COVID-19 isolation ward (China) | Various surfaces (84) | No | ORF1ab and N genes | <37 | 7.1% | Not described | [21] |
Isolation rooms for COVID-19 patients (Ireland) | Various surfaces in isolation rooms and the nurses’ station (81) | No | N2 and E genes | Not described | 16% | Not described | [41] |
Hospital, rehabilitation centre, and apartment building complex with COVID-19 patients (Republic of Korea) | Surfaces frequently touched by the patients (80) | No | RdRp gene E gene | <35 | 2.5% | 27.8, 32.9 31.5, 34.8 | [22] |
Dedicated SARS-CoV-2 outbreak centre (Singapore) | Patient rooms A and B: various surfaces after routine cleaning (52) Patient room C: various surfaces before routine cleaning (28) | No * (23.2–35.3) | RdRp and E genes | ≤45 | 0% 60.7% | - 30.6–38.2 (mostly > 34) | [47] |
Severe COVID-19 cases in isolation rooms (Republic of Korea) | Surroundings of three patients (76) | No * (15.3–26.2) | RdRp and E genes | ≤35 | 19.7% ***** | 28.9–33.0 (mostly > 30) | [7] |
COVID-19 ICU (Singapore) | Various surfaces in common areas and staff pantry (75) | No * (23.1–39.0) | ORF1ab and E genes | <45 | 10.7% ** | 36.2–38.1 | [16] |
COVID-19 ICU (Spain) | Various surfaces in 3 risk areas (72) | No | ORF1ab and N genes | Not described | 0% | - | [23] |
COVID-19 isolation unit (Israel) | Various surfaces (55) | No * (no Ct values) | E gene | <45 | 52.7% ** | 30.0–39.8 | [24] |
COVID-19 isolation ward (China) | Various surfaces (50) | No | E gene | ≤40 | 8.0% ** | 29.4–33.6 | [25] |
COVID-19 isolation ward (Iran) | Various surfaces (50) | No | ORF1ab and N genes | ≤40 | 18.0% ** | 30.9–38.2 | [26] |
COVID-19 reference hospitals (Italy) | Various surfaces (49) | No | RdRp, N, and E genes | < 40 | 6.1% *** | Not described | [27] |
Quarantine room of three COVID-19 patients (China) | Various surfaces (41) | No * (20–39) | ORF1ab gene | <37 | 34.1% | 26–38 (median: 35) | [28] |
Inpatient and outpatient oncology clinics (USA) | Various surfaces around COVID-19 patients (38) | No | ORF1ab gene | Not described | 2.6% | Not described | [39] |
Wards for COVID-19 patients (Spain) | Various surfaces that could not be touched (36) | No * (21.6–37.7) | RdRp, N, and E genes | Not described | 5.6% | 31.9–37.4 | [29] |
COVID-19 cases in hospitals (Italy) | Various surfaces (26) | No | RdRp gene and E genes | Not described | 7.7% ** | “very low RNA levels” | [42] |
COVID-19 isolation wards (Greece) | Various surfaces (26) | No | Not described | Not described | 15.4% | 32–36 | [40] |
COVID-19 ward (Italy) | Various surfaces (22) | No | RdRp, ORF1ab, S, and N genes | <40 | 13.6% | 29.5–33.0 (1 sample); > 35 (two samples) | [44] |
COVID-19 isolation rooms (Saudi Arabia) | Various surfaces (20) | No | Not described | ≤45 | 15% | Not described | [30] |
COVID-19 ward (Italy) | Surfaces with high risk of contamination (16) | No | RdRp gene and E genes | Not described | 0% | - | [31] |
COVID-19 isolation room (Singapore) | Environmental samples (3) | No * (13.7–15.6) | RdRp gene E gene | <36 | 100% 100% | 28.7, 29.7, and 33.3 32.8, 33.5, and 37.8 | [32] |
COVID-19 patient room (China) | Bench, bedside rail, locker, bed table, alcohol dispenser, and window bench (unknown) | No | E gene | <45 | 1 positive sample on window bench | 6.5 × 102 RNA copies per ml | [33] |
Setting (Country) | Types of Sampled Surfaces (n) | Evidence for Infectious Virus in Samples from Cases (Ct Values of Clinical Samples) | Targets on SARS-CoV-2 Genome | Sample Considered Positive with Ct Value of | Proportion of Viral RNA Detection | Ct Values | Reference |
---|---|---|---|---|---|---|---|
Diamond Princess cruise ship during COVID-19 outbreak (Japan) | Surfaces in cabins of confirmed cases (330) Surfaces in cabins of non-cases (160) Surfaces in shared areas (97) | No * (no Ct values) | Not specified | Not specified | 17.3% ** 0% ** 1.0% ** | 26.2–39.0; values < 31.0 only on floors | [49] |
Rooms of COVID-19 patients (Singapore) | High-touch surfaces in accommodation rooms (428) | No * (no Ct values) | RdRp gene | <35 | 0.5% | Not described | [51] |
COVID-19 quarantine hotel (China) | Various surfaces (271) | No * (no Ct values) | ORF1ab and N genes | <40 | 6.6% | 35 (median) | [52] |
COVID-19 cases in isolation at home (Germany) | Surfaces in 21 households (119) | No * (no Ct values) | RdRp and E genes | Not described | 3.4% ** | >30 | [50] |
Clinical microbiology laboratory (France) | Various surfaces (23) | Not applicable | ORF1ab, N, and S genes ORF1ab gene N gene S gene | Not described | 0% 4.3% 0% 17.4% | - 39.0 - 30.3, 37.6, 38.3, 38.8 | [53] |
Centralized quarantine hotel (China) | Various surfaces (22) | No * (25.7–33.1) | ORF1ab and N genes | <40 | 36.4% | 28.8–37.6 (median: 35.6) | [54] |
Nursing home during a COVID-19 outbreak (Greece) | Various surfaces (20) | No * (no Ct values) | Not described | Not described | 20% | 32–34 (median: 32) | [40] |
Long-term care facility with 30 asymptomatic COVID-19 cases (Greece) | Various surfaces (10) | No * (no Ct values) | Not described | Not described | 0% | - | [40] |
Ferryboat during an ongoing COVID-19 outbreak investigation (Greece) | Various surfaces (9) | No * (no Ct values) | Not described | Not described | 55.6% | 26–37 (median: 34) | [40] |
Setting (Country) | Types of Sampled Surfaces (n) | Targets on SARS-CoV-2 Genome | Sample Considered Positive with Ct Value of | Proportion of Viral RNA Detection | Ct Values | Detection Rate of Infectious SARS-CoV-2 | Reference |
---|---|---|---|---|---|---|---|
Various public settings (Brazil) | 17 public squares, 10 universities/schools, 6 bus terminals, 2 public parks, 1 public market, 1 shopping mall, and 21 other public places (530) | N1 and N2 genes | <40 | 5.5% * | 29.0–38.1 (N1) and 30.5–39.6 (N2) | Not described | [11] |
Bank notes (Bangladesh) | Various bank notes (425) | N and ORF1b genes | ≤36 | 7.3% | Not described | Not described | [57] |
Various public settings (USA) | Various surfaces (348) | N1 or E gene | <40 | 8.3% | 28.7–40.2 (N1) ** 26.6–39.0 (E) *** | Not described | [55] |
Various public settings (Iran) | Various high-touch surfaces (104) | N and ORF1ab genes | ≤45 | 22.1% | Not described | Not described | [56] |
Public setting next to COVID-19 hospitalization units (Spain) | Various public high-touch surfaces (46) | RdRp gene | Not described | 0% | - | Not described | [58] |
Playgrounds (Israel) | Various surfaces (43) | RdRp, N, and S genes | Not described | 4.7% | Not described | Not described | [59] |
Various public settings (Italy) | Surfaces in public buildings and outdoors (41) | RdRp, N, and E genes | <40 | 0% | - | Not described | [27] |
Water fountains (Israel) | Various surfaces (25) | RdRp, N, and S genes | Not described | 4.0% | Not described | Not described | [59] |
High-touch public surfaces (Saudi Arabia) | Various surfaces (22) | Not described | ≤45 | 4.5% | Not described | Not described | [30] |
Setting (Country) | Types of Sampled PPEs (n) | Evidence for Infectious Virus in Samples from Cases (Ct Values of Clinical Samples) | Targets on SARS-CoV-2 Genome | Sample Considered Positive with Ct Value of | Proportion of Viral RNA Detection | Ct Values | Reference |
---|---|---|---|---|---|---|---|
Different wards in grade III hospital (China) | Hand sanitizer dispenser (59), glove (78), eye protection, or face shield (58) | No | ORF1ab and N genes | <40 | 20.3% 15.4% 1.7% | Not described | [10] |
COVID-19 negative-pressure isolation room (Republic of Korea) | Different surfaces from PPEs (133) | No | S and N genes | <45 | 11.3% * | Not described; average RNA concentration between 4.3 × 102 and 2.2 × 104 | [60] |
COVID-19 isolation room (Singapore) | Different surfaces from PPEs (90) | No ** (28.8–30.9) | RdRp and E genes | Not described | 0% | - | [61] |
Rooms with non-severe COVID-19 patients (China) | Different surfaces of PPE (55) | No ** (20.8–37.9) | ORF1ab and N genes | <40 | 0% | - | [62] |
University hospital during COVID-19 pandemic (England) | Surfaces of powered air purifying respirators (40) | No | ORF1ab and E genes | Not described | 0% | - | [63] |
ICU and general ward with COVID-19 patients (China) | Shoe sole (9), glove (7), sleeve cuff (9), and face shield (9) | No | ORF1ab and N genes | Not described | 33.3% 14.3% *** 11.1% 0% | Not described; average RNA concentration between 2.9 × 103 and 3.2 × 104 | [19] |
COVID-19 treatment centre for patients after tracheostomy (China) | Powered air-purifying respirators (8), glove (8), gowns (8), and shoes (8) | No | ORF1ab and NP genes | <40 | 0% | - | [17] |
Emergency department (France) | Different surfaces from PPEs (16) | No | ORF1ab and E genes | Not described | 6.3% | 38.4 | [46] |
COVID-19 isolation room (Singapore) | Different surfaces from PPEs (10) | No ** (23.2–35.3) | RdRp and E genes | ≤45 | 10% (front of shoes) | 39.0 | [47] |
COVID-19 isolation room (Singapore) | Face shield (1), N95 mask (1), and waterproof gown (1) | No ** (13.7–15.6) | RdRp and E genes | <36 | 0% 0% 0% | - | [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampf, G.; Pfaender, S.; Goldman, E.; Steinmann, E. SARS-CoV-2 Detection Rates from Surface Samples Do Not Implicate Public Surfaces as Relevant Sources for Transmission. Hygiene 2021, 1, 24-40. https://doi.org/10.3390/hygiene1010003
Kampf G, Pfaender S, Goldman E, Steinmann E. SARS-CoV-2 Detection Rates from Surface Samples Do Not Implicate Public Surfaces as Relevant Sources for Transmission. Hygiene. 2021; 1(1):24-40. https://doi.org/10.3390/hygiene1010003
Chicago/Turabian StyleKampf, Günter, Stephanie Pfaender, Emanuel Goldman, and Eike Steinmann. 2021. "SARS-CoV-2 Detection Rates from Surface Samples Do Not Implicate Public Surfaces as Relevant Sources for Transmission" Hygiene 1, no. 1: 24-40. https://doi.org/10.3390/hygiene1010003