Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition
Abstract
1. Introduction
2. Methodology
3. Structural Diversity of Macroalgal Polysaccharides
3.1. Major Classes of Polysaccharides
3.2. Variability Driven by Species, Habitat, and Extraction Parameters
Method | Target Polysaccharide | Key Parameters | Yield (%) | Advantages | Reference |
---|---|---|---|---|---|
Acid extraction | Fucoidan, alginate, laminarin (e.g., from Durvillaea potatorum) | 0.05 M HCl; 60 °C; 3 h | ~43.6 (total polysaccharides) | Simple; disrupts cell walls and H-bonds; yields high-MW fractions with strong bioactivity | [48] |
Alkaline extraction | Carrageenan (e.g., from Kappaphycus alvarezii) | 60% KOH; 80 °C; 3 h | ~33.0 (carrageenan) | Improves gel strength and 3,6-anhydrogalactose content; industrially established | [49] |
Deep eutectic solvent (DES) | Carrageenan (e.g., from Kappaphycus alvarezii) | ChCl:Glycerol (1:2) + 10% H2O; 80 °C; 1 h | ~60.3 (carrageenan) | Green, recyclable solvent; tuneable selectivity; comparable yields to conventional methods | [50] |
Dynamic Maceration (DM) | Fucoidan (crude, unfractionated) from four arctic brown algae | Maceration with mechanical stirring, 60 °C, 200 rpm, two macerations | Baseline (control) vs. UAE | Preserves higher phlorotannin content; yields lower than UAE but gives higher antioxidant/anticancer activity in some species | [52] |
Enzyme-assisted extraction (EAE) | Fucoidan (e.g., from Nizamuddinia zanardinii) | Cellulase or Alcalase (E/S 1:50); pH 5–7; 50 °C; 2–4 h | ~4–6 (fucoidan) | Mild conditions preserve MW and bioactivity; lower energy and solvent use | [55] |
High hydrostatic pressure (HHP) | Mixed polysaccharides (e.g., fucoidan/alginate from A. nodosum and Saccharina latissima | 350 MPa, for 5 min at 20 ± 2 °C | 23 and 14% for A. nodosum and S. latissima | Rapid, non-thermal permeabilization; preserves heat-sensitive compounds, higher yields | [58] |
Hot water extraction | Ulvan from Ulva papenfussii | pH 7; 90–100 °C; ~2–3 h | ~29% | Uses water as a non-toxic, food-grade solvent; preserves structural sulphate groups relevant for biological activity | [61] |
Ionic liquid extraction | Agarose (e.g., from Gracilaria dura) | Choline laurate (4% w/w) in hot water; RT | ~14.0 (agarose) | Selective separation, mild conditions, IL recycling, high purity without freeze/thaw | [62] |
Microwave-assisted extraction (MAE) | Carrageenan (e.g., from Solieria chordalis); other polysaccharides | 800 W; 90 °C; 10 min; water (1:20 w/v) | ~29.3 (carrageenan) | Very rapid, precise heating; higher yields with less degradation; solvent-efficient | [56,57] |
Multi-step purification (e.g., ethanol, dialysis, chromatography) | Fucoidan (5 brown algae species) | Sequential purification post-extraction | not available | Enhances anti-inflammatory activity by enriching bioactive fractions; removes inhibitory impurities | [53] |
Pressurised liquid extraction (PLE) | Fucoidan (e.g., from Saccharina japonica) | 140 °C; 5 MPa; 15 min; subcritical water (+0.1% NaOH) | ~8.2 (fucoidan) | Fast, green (water only), tuneable conditions; automated, extracts show strong bioactivity | [63] |
Pulsed electric field (PEF) | Polysaccharides from Laminaria digitata | Biomass concentration (0.17–3.28% dry weight), 12–268 pulses, initial temperature 12–48 °C | 2.6 ± 2.9 mg g−1 DW | Non-thermal; electroporation accelerates release, preserves heat-sensitive components | [59] |
Supercritical fluid extraction (SFE) | -Fucoidan from Undaria pinnatifida -Sulfated polysaccharides from Gracilaria mammillaris | -Fucoidan: CO2 at 40 MPa; 40 °C (+5–10% EtOH co-solvent) -Sulfated polysaccharides: Solvent: CO2 at 10–30 MPa+ ethanol (2%, 5%, or 8% as co-solvent); 40–60 °C | Fucoidan: higher recovery with co-solvent and microwave pretreatment -Sulfated polysaccharides: highest antioxidant activity: 30 MPa, 60 °C, 8% ethanol. | Uses non-toxic CO2 + ethanol. Low temperature preserves thermolabile polysaccharides. Sulfated polysaccharides with high antioxidant activity. | [64] |
Ultrasound-assisted extraction (UAE) | Sulfated polysaccharides (e.g., fucoidan from Sargassum muticum); alginate, carrageenan, etc. | 20–500 W; 20 kHz; ≤30 °C; 5–30 min | ~24.8 (vs. 11.1 by hot water) | Cavitation ruptures cells; much faster, higher yield, low temp preserves sensitive molecules; enhances anticoagulant activity; preserves sulfation and MW distribution | [55,65] |
UAE | Fucoidan (crude, unfractionated) from four arctic brown algae | Sonication (22 kHz) at room temperature, 20 min × 2 cycles | ~+43.2% increase over DM (i.e., yield higher) | Higher extraction yield, increased uronic acid content; but lower phlorotannin co-extracted content (~−53.7%) | [52] |
3.3. Advanced Characterisation Techniques
4. Mechanisms of Bioactivity
4.1. Antioxidant and Anti-Inflammatory Pathways
4.2. Immunomodulation and Gut Microbiota Interactions
4.3. Anticancer Actions: Apoptosis, Anti-Metastatic Effects
4.4. Antiviral and Antimicrobial Mechanisms
4.5. In Silico Insights: Molecular Docking and Predictive Modelling
5. Structure–Function Relationships
5.1. Influence of Sulphate Content, Position, and Molecular Weight
5.2. Monosaccharide Composition and Glycosidic Branching
5.3. Chemical Modifications: Sulfation, Acetylation, and Derivatisation
6. Targeted Applications
6.1. Functional Foods and Gut Health: Prebiotic Algal Fibres
6.2. Inflammation and Autoimmune Disorders
6.3. Oncology: Colon, Breast and Liver Cancer Models
6.4. Antiviral Strategies and Immune Priming
6.5. Tissue Engineering and Wound Healing: Hydrogels and Scaffolds
6.6. Cardiovascular Health and Haemostasis
6.7. Metabolic Syndrome and Type 2 Diabetes
6.8. Neuroprotective Applications
6.9. Adverse Effects of Algal Polysaccharides on Gut Health
7. Translational Challenges
7.1. Reproducibility and Standardisation of Polysaccharide Preparations
7.2. Regulatory Considerations in Food and Pharmaceutical Sectors
7.3. Bioavailability and Delivery Barriers
7.4. Batch-to-Batch and Species-to-Species Variability in Scale-Up
7.5. Economic and Environmental Feasibility of Commercial-Scale Production
8. Conclusions and Future Perspectives
8.1. Key Insights and Current Advances
8.2. Limitations, Challenges and Gaps
- Heterogeneity and variability: The composition of MAPs varies widely depending on algal species, geographical origin, growth conditions, and extraction protocols. This variability complicates reproducibility across studies and hampers the establishment of standardised functional claims.
- Research is uneven across polysaccharide classes and algal taxa: while fucoidans are extensively studied, ulvans, laminarins, and carrageenans remain underexplored.
- Incomplete mechanistic understanding: Although many biological activities have been reported, the molecular mechanisms of action remain insufficiently defined. Few studies provide detailed insights into receptor binding, downstream signalling, or metabolic fate in vivo.
- Bioavailability and metabolism: Pharmacokinetic investigations are scarce and often rely on non-standardised methods, limiting understanding of absorption, distribution, metabolism, excretion, and long-term safety. MAPs often show limited intestinal absorption due to their high molecular weight and complex structures. Their metabolic pathways in humans, including microbial fermentation in the gut, remain underexplored.
- Limited translational data: The majority of studies remain confined to in vitro or preclinical models. Well-designed human clinical trials are still scarce, making it difficult to substantiate health claims or establish safe and effective dosages.
- Sustainability and scalability: Expanding the use of MAPs in food and biomedicine requires sustainable macroalgal cultivation, cost-effective processing, and scalable purification technologies. Environmental impacts and supply chain feasibility remain critical considerations.
8.3. Future Perspectives
- Deepening structure–function relationships
- Systematic mapping of how specific sulfation patterns, branching motifs, or molecular weights influence defined biological activities.
- Integration of computational modelling, molecular docking, and artificial intelligence to predict bioactivity based on structure.
- Elucidating molecular mechanisms
- Multi-omics and systems biology approaches to link MAPs to cellular pathways in immunity, inflammation, apoptosis, and metabolism.
- High-resolution structural biology to clarify receptor binding and target specificity.
- Enhancing bioavailability and targeted delivery
- Development of nanoencapsulation, hydrogel systems, or conjugates to improve stability, intestinal uptake, and tissue targeting.
- Exploration of controlled-release formulations for precision delivery in functional foods or pharmaceuticals.
- Standardisation and scalability
- Establishment of international standards for the extraction, purification, and characterisation of MAPs.
- Optimisation of sustainable aquaculture and biorefinery models to ensure reproducible supply chains and minimise ecological impacts.
- Expanding translational and clinical research
- More in vivo studies and human clinical trials to validate health claims and define safety profiles.
- Exploration of MAPs as adjuvants in conventional therapies, particularly in inflammation, metabolic disorders, and immune regulation.
- Precision applications in biomedicine and nutrition
- Tailoring MAP structures for personalised nutrition strategies, aligning dietary polysaccharide intake with individual microbiome profiles and health risks.
- Exploiting MAPs as precision therapeutics, where structural modifications or combinations with other bioactives target specific disease pathways.
8.4. Broader Implications
8.5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO Fishery and Aquaculture Statistics. Global Production by Production Source 1950–2019 (FishstatJ); Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Seaweed Extracts Market Size—By Product, Application, Seaweed Source, Growth Forecast, 2025–2034. Available online: https://www.gminsights.com/industry-analysis/seaweed-extracts-market (accessed on 12 September 2025).
- Carrasqueira, J.; Bernardino, S.; Bernardino, R.; Afonso, C. Marine-Derived Polysaccharides and Their Potential Health Benefits in Nutraceutical Applications. Mar. Drugs 2025, 23, 60. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Costa, M.; Pio, L.; Bule, P.; Cardoso, V.; Alfaia, C.M.; Coelho, D.; Brás, J.; Fontes, C.M.G.A.; Prates, J.A.M. An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Sci. Rep. 2021, 11, 9706. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Martins, C.F.; Costa, M.; Coelho, D.; Pestana, J.; Alfaia, C.; Lordelo, M.; de Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Quality traits and nutritional value of pork and poultry meat from animals fed with seaweeds. Foods 2021, 10, 2961. [Google Scholar] [CrossRef]
- Makarova, A.O.; Derkach, S.R.; Khair, T.; Kazantseva, M.A.; Zuev, Y.F.; Zueva, O.S. Ion-induced polysaccharide gelation: Peculiarities of alginate egg-box association with different divalent cations. Polymers 2023, 15, 1243. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, Y.J.; Kim, H.J.; Kim, Y.S.; Park, W. Immunostimulatory effect of laminarin on RAW 264.7 mouse macrophages. Molecules 2012, 17, 5404–5411. [Google Scholar] [CrossRef]
- Park, S.J.; Sharma, A.; Lee, H.J. An update on the chemical constituents and biological properties of selected species of an underpinned genus of red algae: Chondrus. Mar. Drugs 2024, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Pio, L.B.; Bule, P.; Cardoso, V.A.; Duarte, M.; Alfaia, C.M.; Coelho, D.F.; Brás, J.A.; Fontes, C.M.G.A.; Prates, J.A.M. Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. Anim. Nutr. 2022, 9, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Millotti, G.; Lagast, J.; Jurman, J.; Paliaga, P.; Laffleur, F. Ulvan as an underrated material for wound dressings: A review. Int. J. Biol. Macromol. 2025, 319, 145113. [Google Scholar] [CrossRef] [PubMed]
- Pari, R.F.; Uju, U.; Hardiningtyas, S.D.; Ramadhan, W.; Wakabayashi, R.; Goto, M.; Kamiya, N. Ulva seaweed-derived Ulvan: A promising marine polysaccharide as a sustainable resource for biomaterial design. Mar. Drugs 2025, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ahmed, S. Carrageenans: Structure, Properties and Applications. In Marine Polysaccharides: Advances and Multifaceted Applications; Jenny Stanford Publishing: New Delhi, India, 2019. [Google Scholar]
- Shahin, H.; Elmasry, M.; Steinvall, I.; Söberg, F.; El-Serafi, A. Vascularization is the next challenge for skin tissue engineering as a solution for burn management. Burn. Trauma 2020, 8, tkaa022. [Google Scholar] [CrossRef]
- Karunanithi, S.; Rajappan, K. Biofunctionalized agarose-based biopolymer composites for advanced biomedical applications: A review. Polym. Bull. 2025, 82, 4835–4877. [Google Scholar] [CrossRef]
- Wawszczak, A.; Kocki, J.; Kołodyńska, D. Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications—The Case Studies. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35475. [Google Scholar] [CrossRef]
- Tomić, S.L.; Babić Radić, M.M.; Vuković, J.S.; Filipović, V.V.; Nikodinovic-Runic, J.; Vukomanović, M. Alginate-Based Hydrogels and Scaffolds for Biomedical Applications. Mar. Drugs 2023, 21, 177. [Google Scholar] [CrossRef]
- Li, J.; Bergman, K.; Thomas, J.B.E.; Gao, Y.; Gröndahl, F. Life Cycle Assessment of a large commercial kelp farm in Shandong, China. Sci. Total Environ. 2023, 903, 166861. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Ann. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef]
- Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Rickels, W.; Schmidt, J.; Van Doorn, E.; Proelss, A.A. sustainable development goal for the ocean and coasts: Global ocean challenges benefit from regional initiatives supporting globally coordinated solutions. Mar. Policy 2014, 49, 87–89. [Google Scholar] [CrossRef]
- Román-Guerrero, A.; Cortés-Camargo, S.; Alpizar-Reyes, E.; Fabela-Morón, M.F.; Cruz-Olivares, J.; Velázquez-Gutiérrez, S.K.; Pérez-Alonso, C. Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery. Macromol 2025, 5, 36. [Google Scholar] [CrossRef]
- Jiang, Z.; Yu, G.; Bao, Q.; Xu, X.; Zhu, Y.; Ni, H.; Oda, T. Macrophage-stimulating activities of a novel low molecular weight saccharide fragment prepared from ascophyllan with alginate lyase. J. Funct. Foods 2020, 67, 103839. [Google Scholar] [CrossRef]
- Alfinaikh, R.S.; Alamry, K.A.; Hussein, M.A. Sustainable and biocompatible hybrid materials-based sulfated polysaccharides for biomedical applications: A review. RSC Adv. 2025, 15, 4708–4767. [Google Scholar] [CrossRef]
- Fernández, P.V.; Arata, P.X.; Ciancia, M. Polysaccharides from Codium Species; Elsevier: Amsterdam, The Netherlands, 2014; Volume 71, ISBN 9780124080621. [Google Scholar]
- Zang, L.; Baharlooeian, M.; Terasawa, M.; Shimada, Y.; Nishimura, N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front. Nutr. 2023, 10, 1173225. [Google Scholar] [CrossRef]
- Tziveleka, L.-A.; Ioannou, E.; Roussis, V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr. Polym. 2019, 218, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Hilliou, L.; Moraes, I.C.F.; Almeida, P.L. From the seaweeds’ carrageenan composition to the hybrid carrageenans’ hydrogel elasticity: Identification of a relationship based on the content in iota-carrageenan. Food Hydrocoll. 2025, 162, 111007. [Google Scholar] [CrossRef]
- Campo, V.L.; Kawano, D.F.; da Silva, D.B.; Carvalho, I. Carrageenans: Biological Properties, Chemical Modifications and Applications. Carbohyd. Polym. 2009, 77, 167–179. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, H.; Fu, L.; Ci, F.; Mao, X. Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem. 2021, 349, 129209. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Herath, K.H.; Yang, H.W.; Choi, C.S.; Jeon, Y.J. Anti-inflammatory mechanisms of fucoidans to treat inflammatory diseases: A review. Mar. Drugs 2021, 19, 678. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.F.; De Morais, A.M.B.; De Morais, R.M.S.C. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- Pramanik, S.; Singh, A.; Abualsoud, B.M.; Deepak, A.; Nainwal, P.; Sargsyan, A.S.; Bellucci, S. From algae to advancements: Laminarin in biomedicine. RSC Adv. 2024, 14, 3209–3231. [Google Scholar] [CrossRef]
- Cindana Mo’o, F.R.; Wilar, G.; Devkota, H.P.; Wathoni, N. Ulvan, a polysaccharide from macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Appl. Sci. 2020, 10, 5488. [Google Scholar] [CrossRef]
- Wei, Y.J.; Lin, H.T.V.; Pan, C.L.; Huang, C.H. The Prebiotic Potential of Porphyra-Derived Polysaccharides and Their Utilization by Lactic Acid Bacteria Fermentation. Fermentation 2025, 11, 435. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Xie, X.-T.; Zhou, T.; Malairaj, S.; Veeraperumal, S.; Zhong, S.; Tan, K. Exploring the therapeutic potential of porphyran extracted from Porphyra haitanensis in the attenuation of DSS-induced intestinal inflammation. Int. J. Biol. Macromol. 2024, 271, 132578. [Google Scholar] [CrossRef] [PubMed]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Usov, A.I.; Bilan, M.I.; Ustyuzhanina, N.E.; Nifantiev, N.E. Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus vesiculosus and Ascophyllum nodosum. Mar. Drugs 2022, 20, 638. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Shikov, A.N. The Biochemical composition and antioxidant properties of Fucus vesiculosus from the Arctic region. Mar. Drugs 2022, 20, 193. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Shikov, A.N. Biochemical composition, antiradical potential and human health risk of the Arctic edible brown seaweed Fucus spiralis L. J. Appl. Phycol. 2023, 35, 365–380. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Gorshenina, E.V.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Shikov, A.N. Arctic edible brown alga Fucus distichus L.: Biochemical composition, antiradical potential and human health risk. Plants 2023, 12, 2380. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Gorshenina, E.V.; Daurtseva, A.V.; Flisyuk, E.V.; Generalova, Y.E.; Shikov, A.N. Ascophyllum nodosum (Linnaeus) Le Jolis from Arctic: Its biochemical composition, antiradical potential, and human health risk. Mar. Drugs 2024, 22, 48. [Google Scholar] [CrossRef]
- Draget, K.I.; Moe, S.T.; Skjåk-Bræk, G.; Smidsrød, O. Alginates. In Food Poolysaccharrides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Bonfim-Mendonça, P.S.; Capoci, I.; Tobaldini-Valerio, F.K.; Negri, M.; Svidzinski, T. Overview of β-Glucans from Laminaria spp.: Immunomodulation properties and applications on biologic models. Int. J. Mol. Sci. 2017, 18, 1629. [Google Scholar] [CrossRef]
- Jabeen, F.; Ahmad, R.; Mir, S.; Awwad, N.S.; Ibrahium, H.A. Carrageenan: Structure, properties and applications with special emphasis on food science. RSC Adv. 2025, 15, 22035–22062. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhuyan, P.P.; Ki, J.S. Immunomodulatory, antioxidant, anticancer, and pharmacokinetic activity of ulvan, a seaweed-derived sulfated polysaccharide: An updated comprehensive review. Mar. Drugs 2023, 21, 300. [Google Scholar] [CrossRef]
- Abraham, R.E.; Su, P.; Puri, M.; Raston, C.L.; Zhang, W. Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. Algal Res. 2019, 38, 101389. [Google Scholar] [CrossRef]
- Kasim, S.; Alam, G.; Rifai, Y.; Utami, R.N. Optimization of carrageenan extraction from Kappaphycus alvarezii red algae using microwave assisted extraction method with variation of solvent concentration. SCIREA J. Phys. 2023, 8, 115–128. [Google Scholar] [CrossRef]
- Al-Akayleh, F.; Ali Agha, A.S.; Olaimat, A.R.; Qinna, N.A. Rationalizing Polysaccharide Extraction with Deep Eutectic Solvents: From Supramolecular Architecture to Emerging AI-Guided Solvent Design. Polysaccharides 2025, 6, 82. [Google Scholar] [CrossRef]
- Martins, V.F.R.; Coelho, M.; Machado, M.; Costa, E.; Gomes, A.M.; Poças, F.; Sperotto, R.A.; Rosa-Martinez, E.; Vasconcelos, M.; Pintado, M.E.; et al. Integrated Valorization of Fucus spiralis Alga: Polysaccharides and Bioactives for Edible Films and Residues as Biostimulants. Foods 2024, 13, 2938. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Lapina, I.M.; Kulminskaya, A.A.; Zhurishkina, E.V.; Shikov, A.N. Comparative evaluation of dynamic maceration and ultrasonic assisted extraction of fucoidan from four arctic brown algae on its antioxidant and anticancer properties. Mar. Drugs 2025, 23, 230. [Google Scholar] [CrossRef]
- Jayawardena, T.U.; Nagahawatta, D.P.; Fernando, I.P.S.; Kim, Y.-T.; Kim, J.-S.; Kim, W.-S.; Lee, J.S.; Jeon, Y.-J. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar. Drugs 2022, 20, 755. [Google Scholar] [CrossRef]
- Ummat, V.; Zhao, M.; Sivagnanam, S.P.; Karuppusamy, S.; Lyons, H.; Fitzpatrick, S.; Noore, S.; Rai, D.K.; Gómez-Mascaraque, L.G.; O’Donnell, C.; et al. Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction. Mar. Drugs 2024, 22, 11. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Y.; Dong, X.; Zhou, H.; He, Y.; Ren, D.; Wang, Q.; Yang, H.; Liu, S.; Wu, L. Enzyme-Assisted Extraction of Fucoidan from Kjellmaniella crassifolia Based on Kinetic Study of Enzymatic Hydrolysis of Algal Cellulose. Algal Res. 2022, 66, 102795. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Rivas, S.; Torres, M.D.; Domínguez, H. Microwave-Assisted Extraction of Carrageenan from Sarcopeltis skottsbergii. Mar. Drugs 2023, 21, 83. [Google Scholar] [CrossRef]
- Zayed, A.; Finkelmeier, D.; Hahn, T.; Rebers, L.; Shanmugam, A.; Burger-Kentischer, A.; Ulber, R. Characterization and Cytotoxic Activity of Microwave-Assisted Extracted Crude Fucoidans from Different Brown Seaweeds. Mar. Drugs 2023, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Bojorges, H.; Martínez-Abad, A.; Martínez-Sanz, M.; Rodrigo, M.D.; Vilaplana, F.; López-Rubio, A.; Fabra, M.J. Structural and Functional Properties of Alginate Obtained by Means of High Hydrostatic Pressure-Assisted Extraction. Carbohydr. Polym. 2023, 299, 120175. [Google Scholar] [CrossRef] [PubMed]
- Einarsdóttir, R.; Þórarinsdóttir, K.A.; Aðalbjörnsson, B.V.; Guðmundsson, M.; Marteinsdóttir, G.; Kristbergsson, K. The Effect of Pulsed Electric Field-Assisted Treatment Parameters on Crude Aqueous Extraction of Laminaria digitata. J. Appl. Phycol. 2021, 33, 3287–3296. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ward, F.; Deyab, M.A.; Al-Zahrani, M.; Touliabah, H.E. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023, 28, 7175. [Google Scholar] [CrossRef]
- Gonzales, K.N.; Troncoso, O.P.; Torres, F.G. Controlled extraction and characterization of ulvan from Ulva papenfussii with potential applications in sustainable energy. J. Appl. Phycol. 2025, 37, 2051–2059. [Google Scholar] [CrossRef]
- Sharma, M.; Chaudhary, J.P.; Mondal, D.; Meena, R.; Prasad, K. A green and sustainable approach to utilize bio-ionic liquids for the selective precipitation of high purity agarose from an agarophyte extract. Green Chem. 2015, 17, 2867–2873. [Google Scholar] [CrossRef]
- Saravana, P.S.; Tilahun, A.; Gerenew, C.; Tri, V.D.; Kim, N.H.; Kim, G.-D.; Woo, H.-C.; Chun, B.-S. Subcritical water extraction of fucoidan from Saccharina japonica: Optimization, characterization and biological studies. J. Appl. Phycol. 2018, 30, 579–590. [Google Scholar] [CrossRef]
- Sarkar, S.; Sarkar, S.; Manna, M.S.; Gayen, K.; Bhowmick, T.K. Extraction of carbohydrates and proteins from algal resources using supercritical and subcritical fluids for high-quality products. In Innovative and Emerging Technologies in the Bio-Marine Food Sector; Academic Press: Cambridge, MA, USA, 2022; pp. 249–275. [Google Scholar]
- Flórez-Fernández, N.; López-García, M.; González-Muñoz, M.J.; Vilariño, J.M.L.; Domínguez, H. Ultrasound-assisted extraction of fucoidan from Sargassum muticum. J. Appl. Phycol. 2017, 29, 1553–1561. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Zhu, T.; Liu, Y.; Chu, J.; Chen, N. Structural characterization of polysaccharides of marine origin: A review. Int. J. Biolog. Macromol. 2025, 317, 144979. [Google Scholar] [CrossRef]
- Galkin, M.V.; Di Francesco, D.; Edlund, U.; Samec, J.S. Sustainable sources need reliable standards. Faraday Discuss. 2017, 202, 281–301. [Google Scholar] [CrossRef]
- Mechref, Y.; Novotny, M.V. Structural investigations of glycoconjugates at high sensitivity. Chem. Rev. 2002, 102, 321–369. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, S.R.; Sebastian, J.; Colussi, R.; Ávila do Nascimento, L.; Kemerli-Kalbaran, T.; Yildirim-Yalcin, M.; Delia Alarcon-Rojo, A. Recent Advances in the Characterization of Food Biomacromolecules: Polysaccharide, Protein, and Lipid. Food Sci. Nutr. 2025, 13, e70523. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Pedrosa, R. Sulfated Polysaccharides from Macroalgae—A Simple Roadmap for Chemical Characterization. Polymers 2023, 15, 399. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.J.; Chung, H.S. Fucoidan reduces oxidative stress by regulating HO-1 and SOD-1 gene expression through the Nrf2/HO-1 signalling pathway in HaCaT cells. Mol. Med. Rep. 2016, 14, 3255–3260. [Google Scholar] [CrossRef]
- Zayed, A.; Al-Saedi, D.A.; Mensah, E.O.; Kanwugu, O.N.; Adadi, P.; Ulber, R. Fucoidan’s molecular targets: A comprehensive review of its unique and multiple targets accounting for promising bioactivities supported by in silico studies. Mar. Drugs 2023, 22, 29. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef]
- Narayanan, M.; Rajinikanth, V. Effects of bioactive compounds from marine algae on cancer-related inflammation: A review. Med. Oncol. 2025, 42, 250. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Shikov, A.N. In vitro anti-inflammatory activities of fucoidans from five species of brown seaweeds. Mar. Drugs 2022, 20, 606. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and tissue distribution of fucoidan from Fucus vesiculosus after oral administration to rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Obluchinskaya, E.D.; Vuorela, H. The pharmacokinetics of fucoidan after topical application to rats. Mar. Drugs 2019, 17, 687. [Google Scholar] [CrossRef]
- Shikov, A.N.; Flisyuk, E.V.; Obluchinskaya, E.D.; Pozharitskaya, O.N. Pharmacokinetics of marine-derived drugs. Mar. Drugs 2020, 18, 557. [Google Scholar] [CrossRef] [PubMed]
- Sanghvi, G.A.D.; Ballal, S.; Ariffin, I.A.; Singh, A.; Sabarivani, A.; Jain, B. The biomedical frontier of fucoidan and laminarin: Emerging insights. J. Biomat. Sci. Polym. Ed. 2025, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Tan, X.; Zhang, Y.; Li, F.; Luo, P.; Liu, H. Molecular targets and related biologic activities of fucoidan: A review. Mar. Drugs 2020, 18, 376. [Google Scholar] [CrossRef] [PubMed]
- Shannon, E.; Conlon, M.; Hayes, M. Seaweed components as potential modulators of the gut microbiota. Mar. Drugs 2021, 19, 358. [Google Scholar] [CrossRef]
- Banafa, A.M.; Roshan, S.; Liu, Y.Y.; Chen, H.J.; Chen, M.J.; Yang, G.X.; He, G.Y. Fucoidan induces G(1) phase arrest and apoptosis through caspases-dependent pathway and ROS induction in human breast cancer MCF-7 cells. J. Huazhong Univ. Sci. Technol.-Med. Sci. 2013, 33, 717–724. [Google Scholar] [CrossRef]
- Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Dickinson, J.L. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar. Drugs 2015, 13, 2327–2346. [Google Scholar] [CrossRef]
- Tamzi, N.N.; Rahman, M.M.; Das, S. Recent advances in marine-derived bioactives towards cancer therapy. Int. J. Translat. Med. 2024, 4, 740–781. [Google Scholar] [CrossRef]
- Lin, Y.; Qi, X.; Liu, H.; Xue, K.; Xu, S.; Tian, Z. The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell Int. 2020, 20, 154. [Google Scholar] [CrossRef]
- Morokutti-Kurz, M.; Fröba, M.; Graf, P.; Große, M.; Grassauer, A.; Auth, J.; Schubert, U.; Prieschl-Grassauer, E. Iota-carrageenan neutralizes SARS-CoV-2 and inhibits viral replication in vitro. PLoS ONE 2021, 16, e0237480. [Google Scholar] [CrossRef]
- Alsayyed, R.; Ribeiro, A.; Cabral-Marques, H. Polyelectrolytes and Polyelectrolyte Complexes as Future Antibacterial Agents. Bacteria 2024, 3, 452–475. [Google Scholar] [CrossRef]
- Hans, N.; Gupta, S.; Patel, A.K.; Naik, S.; Malik, A. Deciphering the role of fucoidan from brown macroalgae in inhibiting SARS-CoV-2 by targeting its main protease receptor binding domain: Invitro insilico approach. Int. J. Biol. Macromol. 2023, 248, 125950. [Google Scholar] [CrossRef] [PubMed]
- Montuori, E.; de Pascale, D.; Lauritano, C. Recent discoveries on marine organism immunomodulatory activities. Mar. Drugs 2022, 20, 422. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.K.; Chakraborty, K.; Pai, A.A.; Dhara, S. Therapeutic promise of a sulfated (1→ 4) galactan from edible sea grape Caulerpa racemosa: Modulation of cytokine expression in lipopolysaccharide-induced CALU-1 cells. Int. J. Biol. Macromol. 2025, 313, 144117. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, M.; Gunaseelan, S.; Kubendran Aravind, M.; Mohankumar, V.; Anupam, P.; Harikrishnan, M.; Siva, A.; Ashokkumar, B.; Varalakshmi, P. Marine Algal Antagonists Targeting 3CL Protease and Spike Glycoprotein of SARS-CoV-2: A Computational Approach for Anti-COVID-19 Drug Discovery. J. Biomol. Struct. Dyn. 2021, 40, 8961–8988. [Google Scholar] [CrossRef]
- Jamtsho, T.; Yeshi, K.; Perry, M.J.; Loukas, A.; Wangchuk, P. Approaches, Strategies and Procedures for Identifying Anti-Inflammatory Drug Lead Molecules from Natural Products. Pharmaceuticals 2024, 17, 283. [Google Scholar] [CrossRef]
- Wei, Q.; Fu, G.; Wang, K.; Yang, Q.; Zhao, J.; Wang, Y.; Ji, K.; Song, S. Advances in research on antiviral activities of sulfated polysaccharides from seaweeds. Pharmaceuticals 2022, 15, 581. [Google Scholar] [CrossRef]
- Chandika, P.; Tennakoon, P.; Kim, T.-H.; Kim, S.-C.; Je, J.-Y.; Kim, J.-I.; Lee, B.; Ryu, B.; Kang, H.W.; Kim, H.-W.; et al. Marine biological macromolecules and chemically modified macromolecules; potential anticoagulants. Mar. Drugs 2022, 20, 654. [Google Scholar] [CrossRef]
- Yu, J.; Li, Q.; Wu, J.; Yang, X.; Yang, S.; Zhu, W.; Liu, Y.; Tang, W.; Nie, S.; Hassouna, A.; et al. Fucoidan extracted from sporophyll of Undaria pinnatifida grown in Weihai, China—Chemical composition and comparison of antioxidant activity of different molecular weight fractions. Front. Nutr. 2021, 8, 636930. [Google Scholar] [CrossRef]
- Shoaib, M.H.; Sikandar, M.; Ahmed, F.R.; Ali, F.R.; Qazi, F.; Yousuf, R.I.; Irshad, A.; Jabeen, S.; Ahmed, K. Applications of polysaccharides in controlled release drug delivery system. In Polysaccharides: Properties and Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 607–656. [Google Scholar]
- Li, C.; Tang, T.; Du, Y.; Jiang, L.; Yao, Z.; Ning, L.; Zhu, B. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess. 2023, 10, 66. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, B.; Wang, Z.; Li, M.; Zhao, W. Natural polysaccharides with immunomodulatory activities. Mini Rev. Med. Chem. 2020, 20, 96–106. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, M.; Cao, Q.; Ji, A.; Liang, H.; Song, S. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies. Mar. Drugs 2019, 17, 183. [Google Scholar] [CrossRef]
- Long, H.; Xiao, J.; Wang, X.; Liang, M.; Fan, Y.; Xu, Y.; Wang, Y. Laminarin acetyl esters: Synthesis, conformational analysis and anti-viral effects. Int. J. Biol. Macromol. 2022, 216, 528–536. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, S.R. Polysaccharides and their derivatives for versatile tissue engineering application. Macromol. Biosci. 2013, 13, 395–421. [Google Scholar] [CrossRef]
- Nataraj, A.; Govindan, S.; Rajendran, A.; Ramani, P.; Subbaiah, K.A.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M. Effects of Carboxymethyl Modification on the Acidic Polysaccharides from Calocybe indica: Physicochemical Properties, Antioxidant, Antitumor and Anticoagulant Activities. Antioxidants 2023, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Gotteland, M.; Riveros, K.; Gasaly, N.; Carcamo, C.; Magne, F.; Liabeuf, G.; Rosenfeld, S. The pros and cons of using algal polysaccharides as prebiotics. Front. Nutr. 2020, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Sedgwick, H.; Gibson, G.; Adams, J.; Wijeyesekera, A. Seaweed-derived bioactives. J. Funct. Foods 2025, 125, 6. [Google Scholar] [CrossRef]
- Jim, E.L.; Jim, E.L.; Surya, R.; Permatasari, H.K.; Nurkolis, F. Marine-Derived Polymers–Polysaccharides as Promising Natural Therapeutics for Atherosclerotic Cardiovascular Disease. Mar. Drugs 2025, 23, 325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Z.; Gu, Y.; Gu, R. Therapeutic Effect of Membrane Vesicle Drug Delivery Systems in Inflammatory Bowel Disease. Pharmaceuticals 2025, 17, 1127. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, X.; Xia, L.; Xiong, S.; Xia, B.; Xie, J.; Wu, P. Progress on the Anti-Inflammatory Activity and Structure–Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024, 29, 3852. [Google Scholar] [CrossRef]
- Hung, Y.H.R.; Chen, G.W.; Pan, C.L.; Lin, H.T.V. Production of ulvan oligosaccharides with antioxidant and angiotensin-converting enzyme-inhibitory activities by microbial enzymatic hydrolysis. Fermentation 2021, 7, 160. [Google Scholar] [CrossRef]
- Fu, Y.; Xie, D.; Zhu, Y.; Zhang, X.; Yue, H.; Zhu, K.; Dai, Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front. Med. 2022, 9, 988507. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.S.; Kim, E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS ONE 2012, 7, e50624. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Rahman, M.R.; Ahmed, Z.S.; Afrose, A. Plausibility of natural immunomodulators in the treatment of COVID-19—A comprehensive analysis and future recommendations. Heliyon 2023, 9, e17478. [Google Scholar] [CrossRef] [PubMed]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Optimization of the composition and production technology of fucoidan tablets and their biopharmaceutical evaluation. Pharm. Chem. J. 2020, 54, 509–513. [Google Scholar] [CrossRef]
- Setz, C.; Große, M.; Fröba, M.; Auth, J.; Rauch, P.; Herrmann, A.; Schubert, U. Iota-Carrageenan Inhibits Replication of the SARS-CoV-2 Variants of Concern Omicron BA. 1, BA. 2 and BA. 5. Nutraceuticals 2023, 3, 315–328. [Google Scholar] [CrossRef]
- Cheong, K.L.; Chen, W.; Wang, M.; Zhong, S.; Veeraperumal, S. Therapeutic Prospects of Undaria pinnatifida Polysaccharides: Extraction, Purification, and Functional Activity. Mar. Drugs 2025, 23, 163. [Google Scholar] [CrossRef]
- Dalisson, B.; Barralet, J. Bioinorganics and wound healing. Adv. Healthc. Mater. 2019, 8, 1900764. [Google Scholar] [CrossRef]
- Shen, S.; Chen, X.; Shen, Z.; Chen, H. Marine polysaccharides for wound dressings application: An overview. Pharmaceutics 2021, 13, 1666. [Google Scholar] [CrossRef]
- Patil, N.P.; Le, V.; Sligar, A.D.; Mei, L.; Chavarria, D.; Yang, E.Y.; Baker, A.B. Algal polysaccharides as therapeutic agents for atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 153. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Liu, N.; Zhao, K.; Sheng, Y.; Pang, H.; He, N. Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases. Food Funct. 2022, 13, 11387–11409. [Google Scholar] [CrossRef]
- Lamminpää, I.; Amedei, A.; Parolini, C. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Mar. Drugs 2024, 22, 523. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Chung, D.H.; Heo, H.J. Fucoidan-rich substances from Ecklonia cava improve trimethyltin-induced cognitive dysfunction via down-regulation of amyloid β production/tau hyperphosphorylation. Mar. Drugs 2019, 17, 591. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.A.; Moon, I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs 2020, 18, 347. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, J.; Xuan, R.; Chen, J.; Han, H.; Liu, J.; Wang, F. Dietary κ-carrageenan facilitates gut microbiota-mediated intestinal inflammation. Carboh. Polym. 2022, 277, 118830. [Google Scholar] [CrossRef]
- Wahnou, H.; Chgari, O.; Ndayambaje, M.; Hba, S.; Ouadghiri, Z.; Limami, Y.; Oudghiri, M. Carrageenan and TLR4 Crosstalk: A Comprehensive Review of Inflammatory Responses in Animal Models. Recent Adv. Inflamm. Allergy Drug Discov. 2025, 19, 5–17. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Sokal-Dembowska, A.; Filip, R. Effects of selected food additives on the gut microbiome and metabolic dysfunction-associated Steatotic liver disease (MASLD). Medicina 2025, 61, 192. [Google Scholar] [CrossRef]
- Jacquier, E.F.; van de Wouw, M.; Nekrasov, E.; Contractor, N.; Kassis, A.; Marcu, D. Local and systemic effects of bioactive food ingredients: Is there a role for functional foods to prime the gut for resilience? Foods 2024, 13, 739. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Dusemund, B. Re-evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) as food additives. EFSA J. 2017, 15, e05049. [Google Scholar]
- Kidgell, J.T.; Glasson, C.R.; Magnusson, M.; Vamvounis, G.; Sims, I.M.; Carnachan, S.M.; Taki, A.C. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int. J. Biol. Macromol. 2020, 150, 839–848. [Google Scholar] [CrossRef]
- Kavya, M.; Udayarajan, C.; Fabra, M.J.; López-Rubio, A.; Nisha, P. Edible oleogels based on high molecular weight oleogelators and its prospects in food applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 4432–4455. [Google Scholar] [CrossRef]
- EFSA Panel on Food Additives Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Dusemund, B. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018, 16, e05238. [Google Scholar] [PubMed]
- Xiao, Q.; Fan, X. The Guideline for the Extraction, Purification and Structural Characterization of Sulfated Polysaccharides From Macroalgae. Food Chem. Int. 2025, 1, 61–71. [Google Scholar] [CrossRef]
- Haggag, Y.A.; Abd Elrahman, A.A.; Ulber, R.; Zayed, A. Fucoidan in pharmaceutical formulations: A comprehensive review for smart drug delivery systems. Mar. Drugs 2023, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Rial-Hermida, M.I.; Rey-Rico, A.; Blanco-Fernandez, B.; Carballo-Pedrares, N.; Byrne, E.M.; Mano, J.F. Recent progress on polysaccharide-based hydrogels for controlled delivery of therapeutic biomolecules. ACS Biomater. Sci. Eng. 2021, 7, 4102–4127. [Google Scholar] [CrossRef]
- Kumar, M.; Jha, A.; Mishra, B. Marine biopolymers for transdermal drug delivery. In Marine Biomaterials: Drug Delivery and Therapeutic Applications; Springer Nature Singapore: Singapore, 2022; pp. 157–207. [Google Scholar]
- Lujan, L.M.L.; Hernandez, M.E.O.; Ruiz, J.C.G.; Arzuaga, N.O.; Zazueta, M.G.B.; Lopez, S.T.; Iloki-Assanga, S.B. Fucoidan and fucoxanthin as therapeutic agents in age-related macular. Results Chem. 2025, 17, 102547. [Google Scholar] [CrossRef]
- Loaiza, A.M.B.; Ruiz, H.A.; Araújo, R.G.; Aguilar, C.N.; Chávez, M.L.; Belmares, R.; Rodríguez-Jasso, R.M. Sustainable Bioeconomy for Seaweed in the Food and Pharmaceutical Industry Applications: An Overview. In Microbial Bioprocessing of Agri-food Wastes; CRC Press: Boca Raton, FL, USA, 2023; pp. 375–419. [Google Scholar]
- Dickson, R.; Brigljevic, B.; Lim, H.; Liu, J. Maximizing the sustainability of a macroalgae biorefinery: A superstructure optimization of a volatile fatty acid platform. Green. Chem. 2020, 22, 4174–4186. [Google Scholar] [CrossRef]
- Gomez, L.P.; Alvarez, C.; Zhao, M.; Tiwari, U.; Curtin, J.; Garcia-Vaquero, M.; Tiwari, B.K. Innovative processing strategies and technologies to obtain hydrocolloids from macroalgae for food applications. Carbohydr. Polym. 2020, 248, 116784. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Maurya, R.; Mehariya, S.; Karthikeyan, O.P.; Dharani, G.; Arunkumar, K.; Pugazhendhi, A. Feasibility of bioplastic production using micro-and macroalgae-A review. Environ. Res. 2024, 240, 117465. [Google Scholar] [CrossRef]
- Hreggviðsson, G.O.; Nordberg-Karlsson, E.M.; Tøndervik, A.; Aachmanne, F.L.; Dobruchowska, J.M.; Linares-Pastén, J.; Daugbjerg-Christensen, M.; Moneart, A.; Kristjansdottir, T.; Slettad, H.; et al. Biocatalytic refining of polysaccharides from brown seaweeds. In Sustainable Seaweed Technologies—Cultivation, Biorefinery, and Applications, 1st ed.; Torres, M.D., Kraan, S., Dominguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
Polysaccharide | Monosaccharide Composition | Major Glycosidic Linkages | MW (kDa)/Sulfation (% w/w) | Principal Bioactivities | Typical Applications | Reference |
---|---|---|---|---|---|---|
Brown phylum | ||||||
Alginate | Copolymer of β-D-mannuronic acid (M) and α-L-guluronic acid (G) in M- and G-blocks | β(1 → 4) linking M and G units in homo- and heteropolymeric blocks | 32–400/0 | Immunomodulatory; anti-inflammatory; antioxidant (low-MW fractions); gelation for haemostasis | Wound-healing dressings; drug-delivery hydrogels; cell-encapsulation scaffolds; food stabiliser | [23] |
Ascophyllan | Heteropolysaccharide of fucose, xylose, glucuronic acid; minor glucose and peptide fragments | Alternating α(1 → 3) and α(1 → 4) backbone with fucose/xylose side chains | 100–400/~10 | Potent immunostimulant; anti-tumour; anti-metastatic; antioxidant; anti-inflammatory | Vaccine/cancer immunoadjuvant; functional food supplement for immune health | [24] |
Fucoidan | L-fucose (>75 mol%) with minor galactose, xylose, and glucuronic acid | Alternating α(1 → 3) and α(1 → 4) fucopyranose with branching and O-2/O-4 sulfation | 10–1000/5–30 | Heparin-like anticoagulant; antiviral entry inhibitor; anti-inflammatory; immunomodulatory; anticancer | Nutraceuticals, antiviral sprays, cancer adjuvant therapy, and hydrogel component | [25] |
Laminarin | β-D-glucose linear glucan with occasional β(1 → 6) branches; may terminate in mannitol | β(1 → 3) backbone with ~3% β(1 → 6) branching | 3–6/0 | Antioxidant; immunostimulatory; anti-tumour; antimicrobial | Prebiotic dietary fibre, cancer immunotherapy adjuvant, immunity-boosting wound-healing sprays | [10] |
Green phylum | ||||||
Codium sulfated galactan | ~70% galactose backbone with minor arabinose, glucose, xylose; pyruvate acetals | Primarily β(1 → 3)-D-galactose backbone with sulphates at C-4/C-6; arabinose branches | <20/~20 | Antioxidant; anticoagulant; anticancer; anti-inflammatory | Nutraceutical antioxidant; potential anticancer and anti-inflammatory therapeutics | [26] |
Rhamnan sulfate | >90% L-rhamnose backbone with branching; sulfation at C-2/C-3 | Linear α(1 → 3)-L-rhamnose backbone with α(1 → 2) branches | 50–200/~25 | Anticoagulant; antiviral; anti-hyperlipidaemic; prebiotic | Cardiovascular nutraceutical, antiviral coatings, heparinoid research | [27] |
Ulvan | L-rhamnose (16–45%), D-glucuronic acid (6–19%), L-iduronic acid (1–9%), D-xylose (2–12%) + others | Ulvanobiuronic motifs: β-D-GlcA/α-L-IdoA-(1 → 4)-α-L-Rha-3-sulphate; highly branched | 10–2000/2–40 | Anticoagulant; anti-inflammatory; antioxidant; immunostimulatory; prebiotic; antiviral | Edible films, drug-delivery hydrogels, vaccine adjuvants, and agricultural biostimulants | [28] |
Red phylum | ||||||
Agarose | Alternating D-galactose and 3,6-anhydro-L-galactose units | β(1 → 4) (D-galactose) alternating with α(1 → 3) (L-anhydrogalactose) | 80–140/0 | Inert, biocompatible, strong thermo-reversible gelation | Gel electrophoresis; 3D cell scaffolds; soft capsule shells; wound dressings; food gelling | [17] |
Carrageenan (ι-type) | Repeating β-D-galactose-4-sulphate and α-L-3,6-anhydrogalactose-2-sulfate | β(1 → 3)-D-galactose and α(1 → 4)-galactose (3,6-anhydro bridge) | 100–1000/28–30 | Antiviral; immunomodulatory; soft elastic hydrogel formation | Food gelling (puddings); mucoadhesive drug-delivery; wound dressings | [29] |
Carrageenan (κ-type) | Repeating β-D-galactose-4-sulphate and α-D-3,6-anhydrogalactose | β(1 → 3)-D-galactose and α(1 → 4)-galactose (3,6-anhydro bridge) | 100–1000/25–30 | Strong thermo-reversible gelling with K+; antiviral; mild anticoagulant | Firm gels in foods, tablet binder, antiviral microbicides | [30] |
Carrageenan (λ-type) | Repeating β-D-galactose-2,6-disulfate and α-D-galactose-2-sulphate | β(1 → 3)- and α(1 → 4)-linked galactose (fully sulfated, non-anhydrous) | 100–1000/32–39 | Non-gelling polyelectrolyte; antiviral; anticoagulant | Viscosity modifier in dairy, toothpaste thickener, experimental antiviral sprays | [30] |
Porphyran | Alternating α-L-galactose-6-sulphate and β-D-galactose | β(1 → 3) and α(1 → 4) alternating (similar to agarose, partially sulfated) | 100–500/15–20 | Antioxidant; anti-inflammatory; anti-diabetic; anticancer | Nutraceuticals from nori, edible films, nanocarriers, and metabolic health supplements | [31] |
Application Area | Polysaccharide(s) | Model/System | Key Outcomes | Reference |
---|---|---|---|---|
Antiviral Strategies & Immune Priming | Iota-carrageenan, Fucoidan | Human airway epithelial cultures; influenza-infected mice | ↓ SARS-CoV-2 replication; ↑ type I IFN, NK-cell activity; blocked viral entry | [86] |
Cardiovascular Health & Hemostasis | Rhamnan sulphate, Fucoidan | ApoE−/− atherosclerotic mice; in vitro and in vivo coagulation models | ↓ aortic plaque area; ↓ vascular lipid deposition and NF-κB inflammation; prolonged aPTT without affecting PT/TT | [117] |
Functional Foods & Gut Health | Ulvan, Laminarin, Fucoidan | In vitro faecal fermentation; rodent feeding studies | ↑ SCFA (acetate, propionate, butyrate); ↑ Bifidobacterium/Lactobacillus; improved barrier integrity | [103] |
Inflammation & Autoimmune Disorders | Fucoidan, Acetylated Laminarin, Ulvan oligosaccharides | DSS-induced colitis, murine arthritis, human synoviocytes | ↓ TNF-α, IL-1β; ↓ COX-2/iNOS; ↑ Nrf2 activity; ↓ pro-inflammatory cytokines | [106,107] |
Metabolic Syndrome & Type 2 Diabetes | Fucoidan, Rhamnan sulphate | HFD-induced obese mice, diabetic rodent models | ↓ adiposity and adipocyte size; ↓ adipose inflammation; improved insulin sensitivity; ↓ blood glucose and cholesterol; ↑ SCFA; gut microbiota modulation | [118,119] |
Neuroprotective Applications | Fucoidan, κ-Carrageenan oligosaccharides | Aβ-infused AD rodent models; LPS-activated microglia | ↑ spatial memory; ↑ BDNF/CNTF; enhanced hippocampal insulin signalling; ↓ microglial TNF-α, ROS; ↓ neuronal apoptosis | [120,121] |
Oncology (Colon, Breast, Liver) | Laminarin, Fucoidan | Colon-cancer xenograft; breast and liver cell lines | ↑ Caspase-3, Bax/Bcl-2 ratio; ↓ PI3K/Akt/mTOR; ↓ VEGF, MMP-9; enhanced chemosensitivity | [33,109,110] |
Tissue Engineering & Wound Healing | Alginate, Agarose, Ulvan | Diabetic-rat wounds, cartilage scaffolds, porcine skin | ↑ neovascularisation; accelerated wound closure; ↑ chondrocyte proliferation; hemostasis and antimicrobial action | [16,80,115] |
Polysaccharide | US Regulatory Status | EU Regulatory Status | Pharmacopoeia Monographs | Key Scale-Up Hurdles | Reference |
---|---|---|---|---|---|
Alginate | GRAS as alginic acid and its salts (21 CFR 184.1735) | Food additives E 400–E 404; EFSA re-evaluated 2017 (no ADI needed) | USP “Sodium Alginate”; Ph. Eur. monograph on alginic acid | Variation in M/G block ratio affecting gel properties; broad MW distribution requiring fractionation, desalting, and purity control | [126,128] |
Carrageenan | GRAS (21 CFR 172.620, 182.7255); not authorised in infant formulae | Food additive E 407/E 407a; EFSA ANS Panel re-evaluation 2018 (temporary ADI) | USP “Carrageenan”; Ph. Eur. monograph on carrageenan | Species-dependent κ/ι/λ isoform ratios; control of 3,6-anhydrogalactose and sulfation patterns; removal of trace impurities | [46,129] |
Fucoidan | GRAS Notice GRN 565 (fucoidan from Undaria pinnatifida) | No authorised food-additive status; Novel-Food applications pending | - | Extreme heterogeneity (MW 50–1500 kDa; variable sulfation); lack of certified reference materials; seasonal/species reproducibility issues | [8] |
Laminarin | Not listed as GRAS; considered dietary fibre under 21 CFR 101.9 | No authorised food-additive status; may require Novel-Food approval | - | Polydisperse MW (3–6 kDa) affecting solubility/viscosity; yield variation by harvest conditions; branching pattern variability | [45] |
Rhamnan sulphate | None (under preclinical investigation for heparinoid applications) | Not authorised | - | No regulatory framework; requires toxicity/safety evaluation; structural complexity; lack of scalable isolation methods | [27] |
Ulvan | No GRAS status (would require GRAS notification as dietary fibre) | No authorised food-additive status; Novel-Food dossier under EU Reg. 2015/2283 | - | Very broad MW (2–2000 kDa) and sulfation (2–40%) ranges; safety-data gaps; need for standardised extraction protocols | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M.; Ezzaitouni, M.; Guil-Guerrero, J.L. Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition. Phycology 2025, 5, 58. https://doi.org/10.3390/phycology5040058
Prates JAM, Ezzaitouni M, Guil-Guerrero JL. Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition. Phycology. 2025; 5(4):58. https://doi.org/10.3390/phycology5040058
Chicago/Turabian StylePrates, José A. M., Mohamed Ezzaitouni, and José L. Guil-Guerrero. 2025. "Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition" Phycology 5, no. 4: 58. https://doi.org/10.3390/phycology5040058
APA StylePrates, J. A. M., Ezzaitouni, M., & Guil-Guerrero, J. L. (2025). Marine Macroalgal Polysaccharides as Precision Tools for Health and Nutrition. Phycology, 5(4), 58. https://doi.org/10.3390/phycology5040058