A Review of Climate Change Impact Studies on Harmful Algal Blooms
Abstract
:1. Introduction
2. Indirect Impacts of Climate Change on HABs
2.1. Climate Change Impacts on Lake Temperature
2.2. Climate Change Impacts on Precipitation and Runoff
2.3. Climate Change Impact on Lake Ice
3. Climate Change and HABs
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stauffer, B.A.; Bowers, H.A.; Buckley, E.; Davis, T.W.; Johengen, T.H.; Kudela, R.; McManus, M.A.; Purcell, H.; Smith, G.J.; Woude, A.V.; et al. Considerations in Harmful Algal Bloom Research and Monitoring: Perspectives From a Consensus-Building Workshop and Technology Testing. Front. Mar. Sci. 2019, 6, 399. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.L.; Karlson, B.; Wulff, A.; Kudela, R.; Trick, C.; Asnaghi, V.; Berdalet, E.; Cochlan, W.; Davidson, K.; De Rijcke, M.; et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 2020, 91, 101632. [Google Scholar] [CrossRef] [PubMed]
- Adrian, R.; O′Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C. Climate change and harmful algal blooms. Harmful Algae 2021, 91, 101731. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Michalak, A.M. Exploring temperature and precipitation impacts on harmful algal blooms across continental U.S. lakes. Limnol. Oceanogr. 2019, 65, 992–1009. [Google Scholar] [CrossRef] [Green Version]
- Schmale, D.G.I.; Ault, A.; Saad, W.; Scott, D.T.; Westrick, J.A. Perspectives on Harmful Algal Blooms (HABs) and the Cyberbiosecurity of Freshwater Systems. Front. Bioeng. Biotechnol. 2019, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Coats, R.; Pérez-Losada, J.; Schladow, G.; Richards, R.; Goldman, C. The warming of Lake Tahoe. Clim. Change 2006, 76, 121–148. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S.M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, L06604. [Google Scholar] [CrossRef] [Green Version]
- Jöhnk, K.D.; Huisman, J.; Sharples, J.; Sommeijer, B.; Visser, P.M.; Stroom, J.M. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M. The response of Lake Tahoe to climate change. Clim. Chang 2013, 116, 71–95. [Google Scholar] [CrossRef]
- Sahoo, G.B.; Forrest, A.L.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M. Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnol. Oceanogr. 2015, 61, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.J.; Stow, C.A.; Gronewold, A.D.; Mason, L.A.; McCormick, M.J.; Qian, S.S.; Ruberg, S.A.; Beadle, K.; Constant, S.A.; Hawley, N. Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nat. Commun. 2021, 12, 1688. [Google Scholar] [CrossRef] [PubMed]
- Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Weyhenmeyer, G.A.; Woolway, R.I. Increasing maximum lake surface temperature under climate change. Clim. Change 2021, 165, 56. [Google Scholar] [CrossRef]
- Kraemer, B.M.; Pilla, R.M.; Woolway, R.I.; Anneville, O.; Ban, S.; Colom-Montero, W.; Devlin, S.P.; Dokulil, M.T.; Gaiser, E.E.; Hambright, K.D.; et al. Climate change drives widespread shifts in lake thermal habitat. Nat. Clim. Chang 2021, 11, 521–529. [Google Scholar] [CrossRef]
- Woolway, R.I.; Sharma, S.; Weyhenmeyer, G.A.; Debolskiy, A.; Golub, M.; Mercado-Bettín, D.; Perroud, M.; Stepanenko, V.; Tan, Z.; Grant, L.; et al. Phenological shifts in lake stratification under climate change. Nat. Commun. 2021, 12, 2318. [Google Scholar] [CrossRef]
- Woolway, R.I.; Jennings, E.; Shatwell, T.; Golub, M.; Pierson, D.C.; Maberly, S.C. Lake heatwaves under climate change. Nature 2021, 589, 402–407. [Google Scholar] [CrossRef]
- Woolway, R.I.; Anderson, E.J.; Albergel, C. Rapidly expanding lake heatwaves under climate change. Environ. Res. Lett. 2021, 16, 094013. [Google Scholar] [CrossRef]
- Woolway, R.I.; Albergel, C.; Frölicher, T.L.; Perroud, M. Severe Lake Heatwaves Attributable to Human-Induced Global Warming. Geophys. Res. Lett. 2022, 49, e2021GL097031. [Google Scholar] [CrossRef]
- Barlage, M.J.; Richards, P.L.; Sousounis, P.J.; Brenner, A.J. Impacts of Climate Change and Land Use Change on Runoff from a Great Lakes Watershed. J. Great Lakes Res. 2002, 28, 568–582. [Google Scholar] [CrossRef]
- Burnett, A.W.; Kirby, M.E.; Mullins, H.T.; Patterson, W.P. Increasing Great Lake-effect snowfall during the twentieth century: A regional response to global warming? J. Clim. 2019, 16, 3535–3543. [Google Scholar] [CrossRef] [Green Version]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Flanagan, D.C.; Wang, Z.; Cherkauer, K.A. Climate Change Impacts on Nutrient Losses of Two Watersheds in the Great Lakes Region. Water 2018, 10, 442. [Google Scholar] [CrossRef] [Green Version]
- Jeppesen, E.; Kronvang, B.; Meerhoff, M.; Søndergaard, M.; Hansen, K.M.; Andersen, H.E.; Lauridsen, T.L.; Liboriussen, L.; Beklioglu, M.; Ozen, A.; et al. Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. J. Environ. Qual. 2009, 38, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Wrzesien, M.L.; Pavelsky, T.M. Projected Changes to Extreme Runoff and Precipitation Events from a Downscaled Simulation Over the Western United States. Front. Earth Sci. 2020, 7, 355. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F.; Lall, U.; Fu, B.; Elliott, J.; Jägermeyr, J. Larger Drought and Flood Hazards and Adverse Impacts on Population and Economic Productivity Under 2.0 than 1.5 °C Warming. Earth’s Future 2020, 8, e2019EF001398. [Google Scholar] [CrossRef]
- Zakizadeh, H.R.; Ahmadi, H.; Zehtabiyan, G.R.; Moeini, A.; Moghaddamnia, A. Impact of climate change on surface runoff: A case study of the Darabad River, northeast of Iran. J. Water Clim. Chang 2021, 12, 82–100. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Lathrop, R.C. Lake ice, 2014. Winter, beauty, value, changes, and a threatened future. Lake Line 2014, 43, 18–27. [Google Scholar]
- Lopez, L. The Meltdown: How Climate Change is Affecting Ice on Lake Superior. Available online: https://www.ijc.org/en/meltdown-how-climate-change-affecting-ice-lake-superior (accessed on 20 April 2022).
- Sharma, S.; Magnuson, J.; Batt, R.; Winslow, L.A.; Korhonen, J.; Aono, Y. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Sci. Rep. 2016, 6, 25061. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Blagrave, K.; Magnuson, J.J.; O’Reilly, C.M.; Oliver, S.; Batt, R.D.; Magee, M.; Straile, D.; Weyhenmeyer, G.A.; Winslow, L.; et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Chang 2019, 9, 227–231. [Google Scholar] [CrossRef]
- Imrit, M.A.; Sharma, S. Climate Change is contributing to Faster Rates of Lake Ice Loss in Lakes around the Northern Hemisphere. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006134. [Google Scholar] [CrossRef]
- Watson, C.D.; Auger, G.; Tewari, M.; Treinish, L.A.; Johnston, K.E. Predicting complete winter ice coverage at Lake George, New York. Int. J. Climatol. 2021, 41 (Suppl. 1), E1236–E1251. [Google Scholar] [CrossRef]
- Grant, L.; Vanderkelen, I.; Gudmundsson, L.; Tan, Z.; Perroud, M.; Stepanenko, V.M.; Debolskiy, A.V.; Droppers, B.; Janssen, A.B.G.; Woolway, R.I.; et al. Attribution of global lake systems change to anthropogenic forcing. Nat. Geosci. 2021, 14, 849–854. [Google Scholar] [CrossRef]
- Wells, M.L.; Trainer, V.L.; Smayda, T.J.; Karlson, B.S.; Trick, C.G.; Kudela, R.M.; Ishikawa, A.; Bernard, S.; Wulff, A.; Anderson, D.M.; et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 2015, 49, 68–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glibert, P.M.; Allen, J.I.; Bouwman, L.; Brown, C.W.; Flynn, K.; Lewitus, A.J.; Madden, C.J. Modeling of HABs and eutrophication: Status, advances, challenges. J. Mar. Syst. 2010, 83, 262–275. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive chalenge. J. Phycol. 2010, 46, 220–235. [Google Scholar] [CrossRef]
- Treinish, L.; Tewari, M.; Praino, A.; Glines, M.; Moriarty, V. Atmospheric Drivers for Transient Harmful Algal Blooms (HABs) in a Medium-Sized Oligotrophic Lake. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 13–17 December 2021. [Google Scholar]
- Raine, R. A review of the biophysical interactions relevant to the promotion of HABs in stratified systems: The case study of Ireland. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2014, 101, 21–31. [Google Scholar] [CrossRef]
- Trainer, V.L.; Moore, L.; Bill, B.D.; Adams, N.G.; Harrington, N.; Borchert, J.; da Silva, D.A.; Eberhart, B.T. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar. Drugs 2013, 11, 1815–1835. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.R.; Berdalet, E.; Kudela, R.M.; Cusack, C.K.; Silke, J.; O’Rourke, E.; Dugan, D.; McCammon, M.; Newton, J.A.; Moore, S.K.; et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Moore, S.K.; Trainer, V.L.; Mantua, N.J.; Parker, M.S.; Laws, E.A.; Backer, L.C.; Fleming, L.E. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 2008, 7, S4. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.T.M.; Lee, J.H.W.; Hodgkiss, I.J. A simple model for forecast of coastal algal blooms. Estuar. Coast. Shelf Sci. 2007, 74, 175–196. [Google Scholar] [CrossRef]
- Anderson, D. HABs in a changing world: A perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. Harmful Algae 2014, 2012, 3–17. [Google Scholar]
- Ralston, D.K.; Moore, S.K. Modeling harmful algal blooms in a changing climate. Harmful Algae 2020, 91, 101729. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M.; Anderson, D.M.; Belin, C.; Bottein, M.-Y.D.; Bresnan, E.; Chinain, M.; Enevoldsen, H.; Iwataki, M.; Karlson, B.; McKenzie, C.H.; et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2021, 2, 117. [Google Scholar] [CrossRef]
Climate Change Impact On- | Cited Research Papers | Combined Key Conclusions from the Cited Research Papers |
---|---|---|
Lake Temperature | Coats et al. (2006) Austin and Coleman (2007) Jöhnk et al. (2008) Sahoo et al. (2013a) Sahoo et al. (2015) Anderson et al. (2021) Dokuli et al. (2021) Kraemer et al. (2021) Woolway et al. (2021) Woolway et al. (2021b) Woolway et al. (2022) |
|
Precipitation and Runoff | Barlage et al. (2002) Burnett et al. (2003) Sinha et al. (2017) Wang et al. (2018) Jeppesen et al. (2009) Wrzezien et al. (2020) Zhai et al. (2020) Zakizadeh et al. (2021) |
|
Lake ice | Magnuson and Lathrop (2014) Sharma et al. (2016) Sharma et al. (2019) Imrit and Sharma (2021) Campbell et al. (2020) Grant et al. (2021) |
|
Harmful Algal Blooms | Wells et al. (2015) Glibert et al. (2010) Hallegraeff, (2010) Raine, (2014) Treinish et al. (2020) Trainer et al. (2012) Anderson et al. (2019) Moore et al. (2008) Wong et al. (2007) Ralston and Moore (2020) Anderson (2012) Hallegraeff et al. (2021) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tewari, K. A Review of Climate Change Impact Studies on Harmful Algal Blooms. Phycology 2022, 2, 244-253. https://doi.org/10.3390/phycology2020013
Tewari K. A Review of Climate Change Impact Studies on Harmful Algal Blooms. Phycology. 2022; 2(2):244-253. https://doi.org/10.3390/phycology2020013
Chicago/Turabian StyleTewari, Kushagra. 2022. "A Review of Climate Change Impact Studies on Harmful Algal Blooms" Phycology 2, no. 2: 244-253. https://doi.org/10.3390/phycology2020013
APA StyleTewari, K. (2022). A Review of Climate Change Impact Studies on Harmful Algal Blooms. Phycology, 2(2), 244-253. https://doi.org/10.3390/phycology2020013