Comparing Different Specifications of Mean–Geometric Mean Linking
Abstract
:1. Introduction
2. Mean–Geometric Mean Linking
2.1. Identified Item Parameters in Separate Scaling
2.2. Weighted Means
2.3. Random DIF in Item Difficulties or Item Intercepts
2.4. Estimation of in MGM Linking
2.5. Estimation of in MGM Linking
2.5.1. Unweighted MGM Linking (UW)
2.5.2. Discrimination-Weighted MGM Linking (DW)
2.5.3. Precision-Weighted MGM Linking (PW)
3. Simulation Study
3.1. Method
3.2. Results
4. Empirical Example: PISA 2006 Reading
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2PL | two-parameter logistic |
DIF | differential item functioning |
DW | discrimination-weighted mean–geometric mean linking |
IRF | item response function |
IRT | item response theory |
MGM | mean–geometric mean |
MML | marginal maximum likelihood |
PW | precision-weighted mean–geometric mean linking |
PISA | programme for international student assessment |
RMSE | root mean square error |
SD | standard deviation |
UW | unweighted mean–geometric mean linking |
Appendix A. Country Labels for the PISA 2006 Study
References
- Bock, R.D.; Gibbons, R.D. Item Response Theory; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Reckase, M.D. Multidimensional Item Response Theory Models; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Yen, W.M.; Fitzpatrick, A.R. Item response theory. In Educational Measurement; Brennan, R.L., Ed.; Praeger Publishers: Westport, CT, USA, 2006; pp. 111–154. [Google Scholar]
- van der Linden, W.J. Unidimensional logistic response models. In Handbook of Item Response Theory, Volume 1: Models; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 11–30. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; MIT Press: Reading, MA, USA, 1968; pp. 397–479. [Google Scholar]
- Kamata, A.; Bauer, D.J. A note on the relation between factor analytic and item response theory models. Struct. Equ. Model. 2008, 15, 136–153. [Google Scholar] [CrossRef]
- van der Linden, W.J.; Barrett, M.D. Linking item response model parameters. Psychometrika 2016, 81, 650–673. [Google Scholar] [CrossRef] [PubMed]
- Bock, R.D.; Aitkin, M. Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 1981, 46, 443–459. [Google Scholar] [CrossRef]
- Glas, C.A.W. Maximum-likelihood estimation. In Handbook of Item Response Theory, Volume 2: Statistical Tools; van der Linden, W.J., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 197–216. [Google Scholar] [CrossRef]
- Kolen, M.J.; Brennan, R.L. Test Equating, Scaling, and Linking; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Holland, P.W.; Wainer, H. (Eds.) Differential Item Functioning: Theory and Practice; Lawrence Erlbaum: Hillsdale, NJ, USA, 1993. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Penfield, R.D.; Camilli, G. Differential item functioning and item bias. In Handbook of Statistics, Vol. 26: Psychometrics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 125–167. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, G. IRT linking and equating. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 639–673. [Google Scholar] [CrossRef]
- Sansivieri, V.; Wiberg, M.; Matteucci, M. A review of test equating methods with a special focus on IRT-based approaches. Statistica 2017, 77, 329–352. [Google Scholar] [CrossRef]
- Mislevy, R.J.; Bock, R.D. BILOG 3. Item Analysis and Test Scoring with Binary Logistic Models; Software Manual; Scientific Software International: Chicago, IL, USA, 1990. [Google Scholar]
- Haberman, S.J. Linking Parameter Estimates Derived from an Item Response Model Through Separate Calibrations; (Research Report No. RR-09-40); Educational Testing Service: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Battauz, M. equateIRT: An R package for IRT test equating. J. Stat. Softw. 2015, 68, 1–22. [Google Scholar] [CrossRef]
- Robitzsch, A. Extensions to mean–geometric mean linking. Mathematics 2025, 13, 35. [Google Scholar] [CrossRef]
- De Boeck, P. Random item IRT models. Psychometrika 2008, 73, 533–559. [Google Scholar] [CrossRef]
- Fox, J.P.; Verhagen, A.J. Random item effects modeling for cross-national survey data. In Cross-Cultural Analysis: Methods and Applications; Davidov, E., Schmidt, P., Billiet, J., Eds.; Routledge: London, UK, 2010; pp. 461–482. [Google Scholar] [CrossRef]
- de Jong, M.G.; Steenkamp, J.B.E.M.; Fox, J.P. Relaxing measurement invariance in cross-national consumer research using a hierarchical IRT model. J. Consum. Res. 2007, 34, 260–278. [Google Scholar] [CrossRef]
- Monseur, C.; Berezner, A. The computation of equating errors in international surveys in education. J. Appl. Meas. 2007, 8, 323–335. [Google Scholar]
- Michaelides, M.P.; Haertel, E.H. Selection of common items as an unrecognized source of variability in test equating: A bootstrap approximation assuming random sampling of common items. Appl. Meas. Educ. 2014, 27, 46–57. [Google Scholar] [CrossRef]
- Monseur, C.; Sibberns, H.; Hastedt, D. Linking errors in trend estimation for international surveys in education. IERI Monogr. Ser. 2008, 1, 113–122. [Google Scholar]
- Robitzsch, A.; Lüdtke, O. Linking errors in international large-scale assessments: Calculation of standard errors for trend estimation. Assess. Educ. 2019, 26, 444–465. [Google Scholar] [CrossRef]
- Robitzsch, A. Linking error in the 2PL model. J 2023, 6, 58–84. [Google Scholar] [CrossRef]
- Robitzsch, A. Estimation of standard error, linking error, and total error for robust and nonrobust linking methods in the two-parameter logistic model. Stats 2024, 7, 592–612. [Google Scholar] [CrossRef]
- Robitzsch, A.; Lüdtke, O. An examination of the linking error currently used in PISA. Meas. Interdiscip. Res. Persp. 2024, 22, 61–77. [Google Scholar] [CrossRef]
- Sachse, K.A.; Roppelt, A.; Haag, N. A comparison of linking methods for estimating national trends in international comparative large-scale assessments in the presence of cross-national DIF. J. Educ. Meas. 2016, 53, 152–171. [Google Scholar] [CrossRef]
- Sachse, K.A.; Haag, N. Standard errors for national trends in international large-scale assessments in the case of cross-national differential item functioning. Appl. Meas. Educ. 2017, 30, 102–116. [Google Scholar] [CrossRef]
- Wu, M. Measurement, sampling, and equating errors in large-scale assessments. Educ. Meas. 2010, 29, 15–27. [Google Scholar] [CrossRef]
- Lohr, S.L. Sampling: Design and Analysis; Chapman and Hall/CRC: London, UK, 2021. [Google Scholar] [CrossRef]
- Robitzsch, A. A comparison of linking methods for two groups for the two-parameter logistic item response model in the presence and absence of random differential item functioning. Foundations 2021, 1, 116–144. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ouyang, J.; Xu, G. DIF statistical inference without knowing anchoring items. Psychometrika 2023, 88, 1097–1122. [Google Scholar] [CrossRef]
- Yuan, K.H.; Cheng, Y.; Patton, J. Information matrices and standard errors for MLEs of item parameters in IRT. Psychometrika 2014, 79, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Asparouhov, T.; Muthén, B. Multiple-group factor analysis alignment. Struct. Equ. Model. 2014, 21, 495–508. [Google Scholar] [CrossRef]
- Muthén, B.; Asparouhov, T. IRT studies of many groups: The alignment method. Front. Psychol. 2014, 5, 978. [Google Scholar] [CrossRef]
- Barrett, M.D.; van der Linden, W.J. Estimating linking functions for response model parameters. J. Educ. Behav. Stat. 2019, 44, 180–209. [Google Scholar] [CrossRef]
- Rutkowski, L.; von Davier, M.; Rutkowski, D. (Eds.) A Handbook of International Large-scale Assessment: Background, Technical Issues, and Methods of Data Analysis; Chapman Hall/CRC Press: London, UK, 2013. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.R-project.org (accessed on 15 June 2024).
- Robitzsch, A. sirt: Supplementary Item Response Theory Models, R Package Version 4.2-114. 2025. Available online: https://github.com/alexanderrobitzsch/sirt (accessed on 7 April 2025).
- OECD. PISA 2006 Technical Report; OECD: Paris, France, 2009; Available online: https://bit.ly/38jhdzp (accessed on 3 May 2025).
- von Davier, M.; Yamamoto, K.; Shin, H.J.; Chen, H.; Khorramdel, L.; Weeks, J.; Davis, S.; Kong, N.; Kandathil, M. Evaluating item response theory linking and model fit for data from PISA 2000–2012. Assess. Educ. 2019, 26, 466–488. [Google Scholar] [CrossRef]
- Joo, S.H.; Khorramdel, L.; Yamamoto, K.; Shin, H.J.; Robin, F. Evaluating item fit statistic thresholds in PISA: Analysis of cross-country comparability of cognitive items. Educ. Meas. 2021, 40, 37–48. [Google Scholar] [CrossRef]
- Brennan, R.L. Misconceptions at the intersection of measurement theory and practice. Educ. Meas. 1998, 17, 5–9. [Google Scholar] [CrossRef]
- Camilli, G. IRT scoring and test blueprint fidelity. Appl. Psychol. Meas. 2018, 42, 393–400. [Google Scholar] [CrossRef]
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen, Denmark, 1960. [Google Scholar]
- Heine, J.H.; Heene, M. Measurement and mind: Unveiling the self-delusion of metrification in psychology. Meas. Interdiscip. Res. Persp. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Salzberger, T. The illusion of measurement: Rasch versus 2-PL. Rasch Meas. Trans. 2002, 16, 882. Available online: https://tinyurl.com/25wzmzb5 (accessed on 3 May 2025).
- Linacre, J.M. Understanding Rasch measurement: Estimation methods for Rasch measures. J. Outcome Meas. 1999, 3, 382–405. Available online: https://bit.ly/2UV6Eht (accessed on 3 May 2025).
- Ballou, D. Test scaling and value-added measurement. Educ. Financ. Policy 2009, 4, 351–383. [Google Scholar] [CrossRef]
- van der Linden, W.J. Fundamental measurement and the fundamentals of Rasch measurement. In Objective Measurement: Theory Into Practice (Vol. 2); Wilson, M., Ed.; Ablex Publishing Corporation: Hillsdale, NJ, USA, 1994; pp. 3–24. [Google Scholar]
- Robitzsch, A.; Lüdtke, O. Some thoughts on analytical choices in the scaling model for test scores in international large-scale assessment studies. Meas. Instrum. Soc. Sci. 2022, 4, 9. [Google Scholar] [CrossRef]
- Andrich, D.; Marais, I. A Course in Rasch Measurement Theory; Springer: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Engelhard, G. Invariant Measurement; Routledge: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Melin, J.; Bonn, S.E.; Pendrill, L.; Lagerros, Y.T. A questionnaire for assessing user satisfaction with mobile health apps: Development using Rasch measurement theory. JMIR mHealth uHealth 2020, 8, e15909. [Google Scholar] [CrossRef]
- Wu, M.; Tam, H.P.; Jen, T.H. Educational Measurement for Applied Researchers; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Tennant, A.; Pallant, J.F. DIF matters: A practical approach to test if differential item functioning makes a difference. Rasch Meas. Trans. 2007, 20, 1082–1084. Available online: https://rb.gy/wbiku0 (accessed on 3 May 2025).
- Melin, J.; Cano, S.; Flöel, A.; Göschel, L.; Pendrill, L. The role of entropy in construct specification equations (CSE) to improve the validity of memory tests: Extension to word lists. Entropy 2022, 24, 934. [Google Scholar] [CrossRef]
, DIF in | , DIF in | , DIF in | , DIF in | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | ||||||
20 | 500 | 0.003 | −0.003 | −0.007 | 0.002 | −0.003 | −0.014 | 0.009 | 0.001 | −0.026 | 0.004 | −0.002 | −0.013 | 0.005 | 0.000 | −0.029 | ||||
1000 | 0.002 | −0.002 | −0.004 | 0.002 | −0.002 | −0.011 | 0.001 | −0.003 | −0.029 | 0.003 | −0.001 | −0.011 | 0.000 | −0.005 | −0.033 | |||||
2000 | 0.001 | 0.000 | −0.001 | 0.000 | −0.001 | −0.009 | 0.000 | 0.000 | −0.027 | −0.001 | 0.000 | −0.011 | −0.001 | 0.000 | −0.029 | |||||
Inf | 0.000 | 0.000 | — | 0.000 | 0.000 | — | 0.000 | 0.000 | — | 0.000 | −0.001 | — | −0.003 | −0.001 | — | |||||
40 | 500 | 0.005 | 0.003 | −0.002 | 0.004 | 0.003 | −0.008 | 0.004 | 0.006 | −0.024 | 0.005 | 0.004 | −0.008 | 0.005 | 0.009 | −0.022 | ||||
1000 | 0.003 | −0.001 | −0.002 | 0.001 | −0.002 | −0.010 | 0.004 | 0.001 | −0.025 | 0.001 | −0.001 | −0.011 | −0.001 | −0.004 | −0.031 | |||||
2000 | −0.003 | 0.001 | −0.002 | −0.003 | 0.001 | −0.009 | −0.004 | 0.001 | −0.027 | −0.002 | 0.002 | −0.008 | −0.004 | 0.002 | −0.027 | |||||
Inf | 0.000 | 0.000 | — | 0.001 | 0.001 | — | 0.000 | 0.001 | — | −0.001 | −0.001 | — | 0.002 | 0.001 | — |
, DIF in | , DIF in | , DIF in | , DIF in | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | ||||||
20 | 500 | 0.095 | 0.085 | 0.082 | 0.110 | 0.107 | 0.103 | 0.150 | 0.160 | 0.149 | 0.120 | 0.102 | 0.101 | 0.179 | 0.147 | 0.142 | ||||
1000 | 0.066 | 0.058 | 0.058 | 0.087 | 0.088 | 0.087 | 0.131 | 0.145 | 0.136 | 0.099 | 0.084 | 0.085 | 0.166 | 0.134 | 0.130 | |||||
2000 | 0.046 | 0.042 | 0.042 | 0.074 | 0.079 | 0.078 | 0.122 | 0.139 | 0.131 | 0.087 | 0.073 | 0.075 | 0.156 | 0.127 | 0.125 | |||||
Inf | 0.000 | 0.000 | — | 0.056 | 0.066 | — | 0.112 | 0.130 | — | 0.072 | 0.058 | — | 0.147 | 0.118 | — | |||||
40 | 500 | 0.083 | 0.079 | 0.077 | 0.090 | 0.091 | 0.087 | 0.116 | 0.124 | 0.114 | 0.099 | 0.089 | 0.087 | 0.135 | 0.117 | 0.109 | ||||
1000 | 0.058 | 0.054 | 0.054 | 0.071 | 0.071 | 0.069 | 0.098 | 0.106 | 0.099 | 0.078 | 0.069 | 0.069 | 0.120 | 0.100 | 0.097 | |||||
2000 | 0.040 | 0.038 | 0.038 | 0.056 | 0.060 | 0.059 | 0.089 | 0.103 | 0.095 | 0.065 | 0.057 | 0.057 | 0.111 | 0.092 | 0.089 | |||||
Inf | 0.000 | 0.000 | — | 0.039 | 0.046 | — | 0.079 | 0.092 | — | 0.052 | 0.042 | — | 0.105 | 0.084 | — |
, DIF in | , DIF in | , DIF in | , DIF in | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | UW | DW | PW | ||||||
20 | 500 | 100 | 89.0 | 86.8 | 100 | 97.0 | 94.7 | 100 | 106.1 | 100.7 | 100 | 85.0 | 85.1 | 100 | 82.5 | 80.8 | ||||
1000 | 100 | 87.8 | 87.5 | 100 | 101.0 | 99.8 | 100 | 111.0 | 106.4 | 100 | 84.2 | 85.9 | 100 | 80.8 | 81.1 | |||||
2000 | 100 | 91.9 | 91.4 | 100 | 107.0 | 106.3 | 100 | 114.2 | 109.4 | 100 | 83.9 | 87.1 | 100 | 81.4 | 82.1 | |||||
Inf | — | — | — | 100 | 116.7 | — | 100 | 116.1 | — | 100 | 80.7 | — | 100 | 79.8 | — | |||||
40 | 500 | 100 | 95.3 | 92.9 | 100 | 100.3 | 96.3 | 100 | 106.7 | 99.9 | 100 | 90.2 | 87.8 | 100 | 86.2 | 82.2 | ||||
1000 | 100 | 93.0 | 93.1 | 100 | 100.0 | 98.8 | 100 | 109.0 | 104.3 | 100 | 87.7 | 88.9 | 100 | 83.4 | 84.3 | |||||
2000 | 100 | 96.0 | 94.5 | 100 | 107.6 | 106.1 | 100 | 115.2 | 111.4 | 100 | 86.7 | 87.7 | 100 | 83.2 | 84.0 | |||||
Inf | — | — | — | 100 | 116.2 | — | 100 | 116.4 | — | 100 | 79.5 | — | 100 | 79.9 | — |
DIF Effects | ||||||||
---|---|---|---|---|---|---|---|---|
Item | #CNT | Min | Max | p(SW) | ||||
R055Q01 | 26 | 1.395 | −1.486 | 0.218 | 0.210 | −0.447 | 0.654 | 0.124 |
R055Q02 | 26 | 1.379 | 0.043 | 0.214 | 0.207 | −0.394 | 0.411 | 0.522 |
R055Q03 | 26 | 1.620 | −0.335 | 0.279 | 0.272 | −0.445 | 0.496 | 0.095 |
R055Q05 | 26 | 2.117 | −0.777 | 0.188 | 0.182 | −0.353 | 0.644 | 0.002 |
R067Q01 | 26 | 1.228 | −2.069 | 0.350 | 0.339 | −0.664 | 1.022 | 0.033 |
R067Q04 | 26 | 0.832 | 0.723 | 0.710 | 0.694 | −2.041 | 0.976 | 0.017 |
R067Q05 | 26 | 1.088 | −0.307 | 0.526 | 0.513 | −1.258 | 1.164 | 0.508 |
R102Q04A | 25 | 1.460 | 0.669 | 0.383 | 0.373 | −0.604 | 0.783 | 0.266 |
R102Q05 | 26 | 1.330 | 0.244 | 0.298 | 0.290 | −0.611 | 0.435 | 0.073 |
R102Q07 | 24 | 1.418 | −1.493 | 0.427 | 0.416 | −0.680 | 0.821 | 0.083 |
R104Q01 | 26 | 1.628 | −1.321 | 0.185 | 0.178 | −0.267 | 0.445 | 0.122 |
R104Q02 | 26 | 0.583 | 1.337 | 0.685 | 0.664 | −0.873 | 2.194 | 0.008 |
R104Q05 | 26 | 1.206 | 2.974 | 0.449 | 0.428 | −0.674 | 1.066 | 0.530 |
R111Q01 | 26 | 1.365 | −0.604 | 0.259 | 0.251 | −0.400 | 0.558 | 0.366 |
R111Q02B | 26 | 1.044 | 1.917 | 0.500 | 0.486 | −0.858 | 1.027 | 0.738 |
R111Q06B | 26 | 1.589 | 0.542 | 0.224 | 0.217 | −0.589 | 0.307 | 0.124 |
R219Q01E | 26 | 1.633 | −0.250 | 0.295 | 0.287 | −1.042 | 0.541 | 0.006 |
R219Q01T | 26 | 1.861 | −0.667 | 0.242 | 0.235 | −0.522 | 0.478 | 0.986 |
R219Q02 | 26 | 1.534 | −1.179 | 0.229 | 0.221 | −0.423 | 0.346 | 0.451 |
R220Q01 | 26 | 1.762 | 0.308 | 0.211 | 0.205 | −0.317 | 0.460 | 0.377 |
R220Q02B | 25 | 1.521 | −0.376 | 0.159 | 0.152 | −0.221 | 0.338 | 0.143 |
R220Q04 | 26 | 1.302 | −0.312 | 0.320 | 0.312 | −0.546 | 0.373 | 0.003 |
R220Q05 | 26 | 1.977 | −1.145 | 0.165 | 0.157 | −0.370 | 0.286 | 0.297 |
R220Q06 | 26 | 1.167 | −0.675 | 0.393 | 0.383 | −0.500 | 0.688 | 0.014 |
R227Q01 | 26 | 0.778 | −0.151 | 0.671 | 0.655 | −1.550 | 1.275 | 0.827 |
R227Q02T | 26 | 0.994 | 0.792 | 0.629 | 0.614 | −0.995 | 1.437 | 0.738 |
R227Q03 | 26 | 1.665 | −0.183 | 0.235 | 0.227 | −0.650 | 0.484 | 0.557 |
R227Q06 | 26 | 1.766 | −0.777 | 0.225 | 0.218 | −0.314 | 0.555 | 0.021 |
CNT | N | I | M | SD | ||||
---|---|---|---|---|---|---|---|---|
AUS | 7562 | 28 | 0.170 | 0.960 | 0.249 | 0.246 | 0.350 | −1.46 |
AUT | 2646 | 27 | −0.037 | 1.033 | 0.272 | 0.265 | 0.310 | 3.86 |
BEL | 4840 | 28 | 0.059 | 1.071 | 0.266 | 0.255 | 0.307 | 3.21 |
CAN | 12,142 | 28 | 0.276 | 0.934 | 0.283 | 0.279 | 0.359 | 1.34 |
CHE | 6578 | 28 | 0.023 | 0.958 | 0.327 | 0.320 | 0.377 | 3.87 |
CZE | 3246 | 28 | −0.168 | 1.130 | 0.335 | 0.326 | 0.393 | 3.25 |
DEU | 2701 | 28 | −0.039 | 1.140 | 0.522 | 0.500 | 0.445 | 11.56 |
DNK | 2431 | 27 | 0.001 | 0.891 | 0.398 | 0.394 | 0.447 | 4.63 |
ESP | 10,506 | 28 | −0.351 | 0.815 | 0.413 | 0.408 | 0.479 | 3.90 |
EST | 2630 | 28 | −0.007 | 0.838 | 0.344 | 0.339 | 0.432 | 1.66 |
FIN | 2536 | 28 | 0.516 | 0.854 | 0.330 | 0.326 | 0.378 | 4.26 |
FRA | 2524 | 28 | −0.010 | 0.984 | 0.332 | 0.320 | 0.405 | 1.88 |
GBR | 7061 | 28 | −0.016 | 0.985 | 0.340 | 0.336 | 0.447 | 0.48 |
GRC | 2606 | 28 | −0.431 | 0.952 | 0.490 | 0.479 | 0.510 | 6.62 |
HUN | 2399 | 28 | −0.148 | 0.918 | 0.320 | 0.306 | 0.371 | 3.23 |
IRL | 2468 | 28 | 0.184 | 0.946 | 0.275 | 0.269 | 0.343 | 1.60 |
ISL | 2010 | 28 | −0.069 | 0.915 | 0.326 | 0.320 | 0.405 | 1.87 |
ITA | 11,629 | 28 | −0.285 | 0.984 | 0.350 | 0.340 | 0.422 | 2.55 |
JPN | 3203 | 28 | 0.028 | 1.034 | 0.438 | 0.435 | 0.598 | −0.51 |
KOR | 2790 | 27 | 0.561 | 0.959 | 0.589 | 0.576 | 0.628 | 5.71 |
LUX | 2443 | 27 | −0.180 | 1.012 | 0.333 | 0.315 | 0.358 | 4.65 |
NLD | 2666 | 28 | 0.092 | 1.017 | 0.429 | 0.425 | 0.516 | 2.98 |
NOR | 2504 | 28 | −0.107 | 1.018 | 0.453 | 0.439 | 0.461 | 7.10 |
POL | 2968 | 28 | 0.068 | 1.000 | 0.306 | 0.302 | 0.411 | −0.21 |
PRT | 2773 | 28 | −0.242 | 0.955 | 0.534 | 0.529 | 0.542 | 7.76 |
SWE | 2374 | 28 | 0.107 | 1.004 | 0.288 | 0.283 | 0.327 | 4.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Comparing Different Specifications of Mean–Geometric Mean Linking. Foundations 2025, 5, 20. https://doi.org/10.3390/foundations5020020
Robitzsch A. Comparing Different Specifications of Mean–Geometric Mean Linking. Foundations. 2025; 5(2):20. https://doi.org/10.3390/foundations5020020
Chicago/Turabian StyleRobitzsch, Alexander. 2025. "Comparing Different Specifications of Mean–Geometric Mean Linking" Foundations 5, no. 2: 20. https://doi.org/10.3390/foundations5020020
APA StyleRobitzsch, A. (2025). Comparing Different Specifications of Mean–Geometric Mean Linking. Foundations, 5(2), 20. https://doi.org/10.3390/foundations5020020