Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering
Abstract
1. Introduction
- Examine the dispersion of Er3+ ions: Do they remain uniformly distributed in the amorphous matrix, form clusters, or migrate into nanocrystalline phases?
- Investigate how thermal treatments affect the distribution and structural organization of Er3+ ions, observed through SAXS and ASAXS.
- Explore the local electronic environment of Er3+ ions using XPS, focusing on their binding energies and phase composition.
2. SAXS and ASAXS to Study Erbium-Doped Nanocrystals Embedded Within Glass
2.1. General Principles
2.2. Energy-Dependent Scattering and the Linear Relationship Versus
2.3. Guinier Analysis and Radius of Gyration
2.4. Synergistic Role of ASAXS and Guinier Analysis for Erbium Distribution
3. Materials and Methods
3.1. SAXS and ASAXS Measurements
3.2. Data Processing and Analysis
4. Results and Discussion
4.1. Crystallization Behavior
4.2. Nanostructure Characterization via SAXS
4.3. Interpretation of the β/α Ratio
4.4. X-Ray Photoelectron Spectroscopy (XPS) Analysis
4.5. Corroboration with ASAXS and SAXS Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strohhöfer, C.; Fick, J.; Vasconcelos, H.; Almeida, R. Active optical properties of Er-containing crystallites in sol–gel derived glass films. J. Non-Crystalline Solids 1998, 226, 182–191. [Google Scholar] [CrossRef]
- Lahoz, F.; Capuj, N.; Haro-González, P.; Martín, I.R.; Pérez-Rodríguez, C.; Cáceres, J.M. Stimulated emission in the red, green, and blue in a nanostructured glass ceramics. J. Appl. Phys. 2011, 109, 043102. [Google Scholar] [CrossRef]
- Jiang, B.; Hu, Y.; Ren, L.; Zhou, H.; Shi, L.; Zhang, X. Four- and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature. Nanophotonics 2022, 11, 4315–4322. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Ahmed, M.H.; Khan, I.; Miah, M.S.; Hossain, S. Recent Progress of Rare Earth Oxides for Sensor, Detector, and Electronic Device Applications: A Review. ACS Appl. Electron. Mater. 2021, 3, 4255–4283. [Google Scholar] [CrossRef]
- Vasconcelos, H.C.; Pinto, A.S. Fluorescence Properties of Rare-Earth-Doped Sol-Gel Glasses; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Zhao, W.; Jia, H.; Qu, J.; Yang, C.; Wang, Y.; Zhu, J.; Wu, H.; Liu, G. Sol-gel synthesis of TiO2-SiO2 hybrid films with tunable refractive index for broadband antireflective coatings covering the visible range. J. Sol-Gel Sci. Technol. 2023, 107, 105–121. [Google Scholar] [CrossRef]
- Almeida, R.M.; Morais, P.J.; Vasconcelos, H.C. Optical loss mechanisms in nanocomposite sol-gel planar waveguides. In Sol-Gel Optics IV; SPIE: Bellingham, WA, USA, 1997; Volume 3136. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Meirelles, M.; Rivera-López, F. Erbium photoluminescence response related to nanoscale heterogeneities in sol-gel silicates. J. Rare Earths 2013, 31, 18–26. [Google Scholar] [CrossRef]
- Langlet, M.; Coutier, C.; Fick, J.; Audier, M.; Meffre, W.; Jacquier, B.; Rimet, R. Sol–gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7. Opt. Mater. 2001, 16, 463–473. [Google Scholar] [CrossRef]
- Lahoz, F.; Pérez-Rodríguez, C.; Halder, A.; Das, S.; Paul, M.C.; Pal, M.; Bhadra, S.K.; Vasconcelos, H.C. Complete energy transfer due to rare-earth phase segregation in optical fiber preform glasses. J. Appl. Phys. 2011, 110, 083121. [Google Scholar] [CrossRef]
- Forster, T. Intermolecular Energy Migration and Fluorescence. Ann. Phys. 1948, 2, 55–75. [Google Scholar]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Abdullah, A.; Benchafia, E.M.; Choi, D.; Abedrabbo, S. Synthesis and Characterization of Erbium-Doped Silica Films Obtained by an Acid–Base-Catalyzed Sol–Gel Process. Nanomaterials 2023, 13, 1508. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shen, H.; Cao, J.; Li, D.; Yang, D. Control of the formation and luminescent properties of polymorphic erbium silicates on silicon. Opt. Mater. Express 2019, 9, 1716–1727. [Google Scholar] [CrossRef]
- Li, T.; Senesi, A.J.; Lee, B. Small Angle X-ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180. [Google Scholar] [CrossRef] [PubMed]
- Hoell, A.; Raghuwanshi, V.S.; Bocker, C.; Herrmann, A.; Rüssel, C.; Höche, T. Crystallization of BaF2 from droplets of phase separated glass—Evidence of a core-shell structure by ASAXS. CrystEngComm 2020, 22, 5031–5039. [Google Scholar] [CrossRef]
- Gericke, E.; Wallacher, D.; Wendt, R.; Greco, G.; Krumrey, M.; Raoux, S.; Hoell, A.; Mascotto, S. Direct Observation of the Xenon Physisorption Process in Mesopores by Combining In Situ Anomalous Small-Angle X-ray Scattering and X-ray Absorption Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 4018–4023. [Google Scholar] [CrossRef] [PubMed]
- Haas, S.; Hoell, A.; Wurth, R.; Rüssel, C.; Boesecke, P.; Vainio, U. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+. Phys. Rev. B 2010, 81, 184207. [Google Scholar] [CrossRef]
- Santos, L.F.; Barros Marques, M.I.; Vasconcelos, H.C.; Almeida, R.M.; Lyon, O. Caracterização de Filmes Finos por SAXS e ASAXS. Física 2000 (Oral Presentation): 12ª Conferência nacional de Física: 10º Encontro Ibérico Para o Ensino da Física, Sociedade Portuguesa de Física, 27–30 September 2000, Figueira da Foz, Portugal. Abstract. 2000. Available online: https://www.yumpu.com/pt/document/read/5920105/programa-nautilus-universidade-de-coimbra (accessed on 12 November 2024).
- Sun, Y. Anomalous small-angle X-ray scattering for materials chemistry. Trends Chem. 2021, 3, 1045–1060. [Google Scholar] [CrossRef]
- Hoell, A.; Varga, Z.; Raghuwanshi, V.S.; Krumrey, M.; Bocker, C.; Rüssel, C. ASAXS study of CaF2 nanoparticles embedded in a silicate glass matrix. J. Appl. Crystallogr. 2014, 47, 60–66. [Google Scholar] [CrossRef]
- Ramos, A.; Lyon, O.; Levelut, C. Stoichiometry of Cd(S,Se) nanocrystals by anomalous small-angle x-ray scattering. J. Appl. Phys. 1995, 78, 6916–6922. [Google Scholar] [CrossRef]
- Sazaki, S. Anomalous Scattering Factors for Synchrotron Radiation Users. In Calculated Using Cromer and Liberman’s Method, KEK Report; National Lab. for High Energy Physics (Tsukuba, Japan): Tsukuba, Japan, 1984; pp. 82–83. [Google Scholar]
- Skuld. (n.d.). AS Periodic. University of Washington. Retrieved 10 November 2024. Available online: http://skuld.bmsc.washington.edu/scatter/AS_periodic.html (accessed on 10 November 2024).
- Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M. Activated Carbon from Agricultural Wastes for Adsorption of Organic Pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Lesieur, P.; Lombardo, D.; Beauche, C.; Creoff, T.; Decamps, J.M.; Dubuisson, G.; Perilhous, S.; Lesieur, G.; Keller, M.; Ollivon, M. New Features at the LURE-D22 SAXS Beamline. Proceedings of the International School and Symposium on Small Angle Scattering (p. 62). Matrahaza, Hungary: Neutron Physics Department, Research Institute for Solid State Physics and Optics. Hosted by the Hungarian Academy of Sciences. 1998. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/036/30036868.pdf (accessed on 10 November 2024).
- Kutsch, B.; Lyon, O.; Schmitt, M.; Mennig, M.; Schmidt, H. Small-Angle X-ray Scattering Experiments in Grazing Incidence on Sol–Gel Coatings Containing Nano-Scaled Gold Colloids: A New Technique for Investigating Thin Coatings and Films. J. Appl. Cryst. 1997, 30, 948–956. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Pereira, J.C.; Matos, J.C.; Vasconcelos, H.C. Photonic Band Gap and Bactericide Performance of Amorphous Sol-Gel Titania: An Alternative to Crystalline TiO2. Molecules 2018, 23, 1677. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.; Maqsood, A. Sintering effects on structure, morphology, and electrical properties of sol-gel synthesized, nano-crystalline erbium oxide. Electron. Mater. Lett. 2012, 8, 605–608. [Google Scholar] [CrossRef]
- Bolzoni, L.; Yang, F. X-ray diffraction for phase identification in Ti-based alloys: Benefits and limitations. Phys. Scr. 2024, 99, 065024. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sudarshan, K.; Jena, P.; Ghosh, P.S.; Yadav, A.K.; Jha, S.N.; Bhattacharyya, D. Bright aspects of defects and dark traits of dopants in the photoluminescence of Er2X2O7:Eu3+ (X = Ti and Zr) pyrochlore: An insight using EXAFS, positron annihilation and DFT. Mater. Adv. 2021, 2, 3075–3087. [Google Scholar] [CrossRef]
- Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026. [Google Scholar] [CrossRef]
- Bouabdalli, E.M.; El Jouad, M.; Touhtouh, S.; Chellakhi, A.; Hajjaji, A. Synthesis, structural, and optical behavior of erbium-doped silicophosphate glasses for photonics applications. Luminescence 2024, 39, e4802. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.K.; Babu, P.R.; Kavaz, E.; Kshetri, Y.K.; Kim, T.-H.; Anjos, V.d.C.d.; Raju, B.D.P. Spectroscopic characteristics and gain cross-section profiles of erbium-doped boro-tellurite glasses for optical amplifier applications. Opt. Mater. 2024, 148, 114950. [Google Scholar] [CrossRef]
- Coutier, C.; Audier, M.; Fick, J.; Rimet, R.; Langlet, M. Aerosol–gel preparation of optically active layers in the system Er/SiO2–TiO2. Thin Solid Films 2000, 372, 177–189. [Google Scholar] [CrossRef]
- Santos, L.; Vasconcelos, H.; Marques, M.B.; Almeida, R.M. Active Nanocrystals in Erbium-Doped Silica-Titania Sol-Gel Films. Mater. Sci. Forum 2004, 455-456, 545–549. [Google Scholar] [CrossRef]
- Vasconcelos, H.C. Optical Waveguides Based on Sol-Gel Coatings. In Waveguide Technologies in Photonics and Microwave Engineering; Steglich, P., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-83968-189-9. [Google Scholar]
- Orignac, X.; Vasconcelos, H.C.; Du, X.M.; Almeida, R.M. Influence of solvent concentration on the microstructure of SiO2−TiO2 sol-gel films. J. Sol-Gel Sci. Technol. 1997, 8, 243–248. [Google Scholar] [CrossRef]
- Bagus, P.S.; Nelin, C.J.; Al-Salik, Y.; Ilton, E.S.; Idriss, H. Multiplet splitting for the XPS of heavy elements: Dependence on oxidation state. Surf. Sci. 2016, 643, 142–149. [Google Scholar] [CrossRef]
- X-RAY DATA BOOKLET, Center for X-Ray Optics and Advanced Light Source. Lawrence Berkeley National Laboratory. Available online: https://xdb.lbl.gov/ (accessed on 4 November 2024).
- Tessler, L.R.; Piamonteze, C.; Iniguez, A.C.; de Siervo, A.; Landers, R.; Morais, J. UPS of a-Si:H: What is the energy of the Er 4f states? MRS Proc. 2000, 609, 111. [Google Scholar] [CrossRef]
Energy (eV) | ΔE (eV) | λ (Å) | |
---|---|---|---|
8000 | 357 | 1.5500 | −9.584 |
8157 | 200 | 1.5200 | −10.822 |
8211 | 146 | 1.5100 | −11.487 |
8265 | 92 | 1.5001 | −12.474 |
8289 | 68 | 1.4957 | −13.105 |
8313 | 44 | 1.4914 | −14.015 |
8324 | 33 | 1.4894 | −14.625 |
8336 | 21 | 1.4874 | −15.539 |
8341 | 16 | 1.4864 | −16.095 |
8347 | 10 | 1.4853 | −17.059 |
Sample Composition | Crystallization Behavior | References | |
---|---|---|---|
900 °C | 1000 °C | ||
A: 80SiO2–20TiO2–2 mol% ErO1.5 | am | R + ETO | [1], This work |
B: 80SiO2–20TiO2–10 mol% PO2.5 and 2 mol% ErO1.5 | am | R + EPO | [1] |
C: 98SiO2–2TiO2–10 mol% PO2.5 and 2 mol% ErO1.5 | EPO | EPO | [1] |
D: 98SiO2–2TiO2 with 2 mol% ErO1.5 | ETO | ETO | This work |
Sample | A1 | A2 | B1 | B2 | C1 | C2 | D1 | D2 |
---|---|---|---|---|---|---|---|---|
β/α | 230.9 | 56.9 | 73.6 | 86.1 | 57.5 | 56.5 | 51.5 | 65.9 |
0.723 | 0.980 | 0.980 | 0.980 | 0.980 | 0.980 | 0.980 | 0.980 | |
Rg (nm) | 16.9 | 17.23 | 18.02 | 18.03 | 18.93 | 17.79 | 18.50 | 17.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, H.C.; Meirelles, M.; Özmenteş, R.; Santos, L. Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering. Foundations 2025, 5, 5. https://doi.org/10.3390/foundations5010005
Vasconcelos HC, Meirelles M, Özmenteş R, Santos L. Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering. Foundations. 2025; 5(1):5. https://doi.org/10.3390/foundations5010005
Chicago/Turabian StyleVasconcelos, Helena Cristina, Maria Meirelles, Reşit Özmenteş, and Luís Santos. 2025. "Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering" Foundations 5, no. 1: 5. https://doi.org/10.3390/foundations5010005
APA StyleVasconcelos, H. C., Meirelles, M., Özmenteş, R., & Santos, L. (2025). Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering. Foundations, 5(1), 5. https://doi.org/10.3390/foundations5010005