Classifying Sets of Type (4,n) in PG(3,q)
Abstract
:1. Introduction
2. Material and Methods
3. Results
(2d + 1)2h−1 − 2(d2 + d + 4) − 2d + 2 = 0
(5d + 1)5h−1 − 5(d2 + d + 4) − 2d + 2 = 0
(3d + 1)3h−1 − 3(d2 + d + 4) − 2d + 1 = 0
(9d + 1)3h−2 − 9(d2 + d + 4) − 2d + 1 = 0
(2d + 1)2h−1 − 2(d2 + d + 4) − 2d = 0
(4d + 1)2h−2 − 4(d2 + d + 4) − 2d = 0
(8d + 1)2h−3 − 8(d2 + d + 4) − 2d = 0
(7d + 1)7h−1 − 7(d2 + d + 4) − 2d − 1 = 0
(2d + 1)2h−1 − 2(d2 + d + 4) − 2d − 2 = 0
(3d + 1)3h−1 − 3(d2 + d + 4) − 2d − 2 = 0
(5d + 1)5h−1 − 5(d2 + d + 4) − 2d − 3 = 0
3h−1d − d2 − d − 3 = 0
2h−1d − d2 − d – 3 = 0
dpe = d2 + d + 4
2h−1d − d2 − d – 5 = 0
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Delsarte, P. Weights of linear codes and strongly regular normed spaces. Discret. Math. 1972, 3, 47–64. [Google Scholar] [CrossRef]
- Calderbank, R.; Kantor, W.M. The geometry of two-weight codes. Bull. Lond. Math. Soc. 1986, 18, 91–102. [Google Scholar] [CrossRef]
- Penttila, T.; Royle, G.F. Sets of type (m, n) in the affine and projective planes of order nine. Des. Codes Crypt. 1995, 6, 229–245. [Google Scholar] [CrossRef]
- Blokhuis, A.; Lavrauw, M. On two-intersection sets with respect to hyperplanes in projective spaces. J. Combin. Theory Ser. A 2002, 99, 377–382. [Google Scholar] [CrossRef]
- Napolitano, V.; Olanda, D. Sets of type (3,h) in PG(3,q). Rend. Lincei Mat. Appl. 2012, 23, 395–403. [Google Scholar] [CrossRef]
- Thas, J.A. A combinatorial problem. Geom. Dedicata 1973, 1, 236–240. [Google Scholar] [CrossRef]
- Durante, N.; Napolitano, V.; Olanda, D. On k-sets of type (2,h) in a planar space. Ars Combin. 2006, 78, 201–209. [Google Scholar]
- Zuanni, F. A note on sets of type (3,n) in PG(3,q). Bull. ICA 2023, 99, 44–51. Available online: http://bica.the-ica.org/Volumes/99//Reprints/BICA2023-17-Reprint.pdf (accessed on 17 April 2024).
- Tallini Scafati, M. Sui k—Insiemi di uno spazio di Galois Sr,q a due soli caratteri nella dimensione d. Rend. Lincei Mat. Appl. 1976, 60, 782–788. Available online: https://eudml.org/doc/291158 (accessed on 17 April 2024).
- Hirschfeld, J.W.P. Projective Geometries over Finite Fields; online ed.; Oxford Academic: Oxford, UK, 1998. [Google Scholar] [CrossRef]
- Bouyukliev, I.; Simonis, J. Some New Results on Optimal Codes Over F5. Des. Codes Cryptogr. 2003, 30, 97–111. [Google Scholar] [CrossRef]
- Zuanni, F. On sets of type (m,m+q)2 in PG(3,q). J. Geom. 2017, 108, 1137–1155. [Google Scholar] [CrossRef]
- Soicher, L.H. Available online: http://www.maths.qmw.ac.uk/leonard/partialspreads/ (accessed on 17 April 2024).
- Heden, O. Maximal partial spreads in PG(3,5). Ars Combin. 2000, 57, 97–101. Available online: https://api.semanticscholar.org/CorpusID:27975200 (accessed on 17 April 2024).
- Kiermaier, M. Available online: https://mathscinet.ams.org/mathscinet/MR2999552 (accessed on 17 April 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innamorati, S. Classifying Sets of Type (4,n) in PG(3,q). Foundations 2024, 4, 263-272. https://doi.org/10.3390/foundations4020017
Innamorati S. Classifying Sets of Type (4,n) in PG(3,q). Foundations. 2024; 4(2):263-272. https://doi.org/10.3390/foundations4020017
Chicago/Turabian StyleInnamorati, Stefano. 2024. "Classifying Sets of Type (4,n) in PG(3,q)" Foundations 4, no. 2: 263-272. https://doi.org/10.3390/foundations4020017
APA StyleInnamorati, S. (2024). Classifying Sets of Type (4,n) in PG(3,q). Foundations, 4(2), 263-272. https://doi.org/10.3390/foundations4020017