On Mach’s Principle in Entropic Gravity
Abstract
:1. Introduction and Background
2. Gravitational Force from Entropic Considerations
2.1. Spacetime and Transactions
2.2. Spatial Information
2.3. Transactions and a Holographic Principle
2.4. Entropic Force
3. Mach’s Principle
3.1. The Nature of Gravity
3.2. Mach’s Principle
3.3. The Gravitational Constant
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mach, E. History and Root of the Principle of the Conservation of Energy. In The Science of Mechanics, 6th ed.; Open Court Publishing Company: McLean, VA, USA, 1904. [Google Scholar]
- Barbour, J. The Definition of Mach’s Principle. Found. Phys. 2010, 4, 1263–1284. [Google Scholar] [CrossRef]
- Einstein, A.S.B. preuss. Akad. Wiss. 1917, i, 147. [Google Scholar]
- Sciama, D. On the origin of inertia. Mon. Not. R. Astronmical Soc. 1953, 113, 34. [Google Scholar] [CrossRef]
- Assis, A.K.T. Relational Mechanics; Apeiron: Montreal, QC, Canada, 1999. [Google Scholar]
- Giné, J. On the Origin of the Inertia: The modified Newtonian Dynamics Theory. Chaos Solitons Fractals 2009, 41, 1651–1660. [Google Scholar] [CrossRef]
- Brans, C.H.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Schlatter, A. On the Foundations of Space and Time by Quantum-Events. Found. Phys. 2022, 52, 7. [Google Scholar] [CrossRef]
- Schlatter, A.; Kastner, R.E. Gravity from Transactions: Fulfilling the Entropic Gravity Program. J. Phys. Commun. 2023, 7, 065009. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 4, 29. [Google Scholar] [CrossRef]
- Kastner, R.E. The Transactional Interpretation of Quantum Mechanics: A Relativistic Treatment; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Sorkin, R.D. Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School). arXiv 2003. [Google Scholar] [CrossRef]
- Kastner, R.E.; Schlatter, A. Entropy Cost of “Erasure” in Physically Irrversible Processes. Mathematics 2024, 12, 206. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Appendix D; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Fletcher, S.C. Light Clocks and the Clock Hypothesis. Found. Phys 2013, 43, 1369–1383. [Google Scholar] [CrossRef]
- Bergson, H. Durée et Simultanéité, a Propos de la Théorie d’Einstein; Presses Universitaires de France: Paris, France, 1922. [Google Scholar]
- Davidson, W. General Relativity and Mach’s Principle. Mon. Not. R. Astron. Soc. 1957, 117, 212–224. [Google Scholar] [CrossRef]
- Schrödinger, E. Die Erfüllbarkeit der Relativitätsanforderung in der klassischen Mechnik. Ann. Phys. 1925, 328, 325–336. [Google Scholar] [CrossRef]
- Dirac, P.A.M. A new basis for cosmology. Proc. Roy. Soc. Lond. A 1938, 165, 199–208. [Google Scholar] [CrossRef]
- Unziker, A. A Look at the Abandoned Contributions to Cosmology of Dirac, Sciama and Dicke. Ann. Phys. 2009, 18, 53–70. [Google Scholar] [CrossRef]
- Bousso, R. The Holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Bousso, R. The holographc principle for general backgrounds. Class. Quantum Gravity 2000, 17, 997–1005. [Google Scholar] [CrossRef]
- Howard, E.M. Entropy of Causal Horizons. J. Appl. Math. Phys. 2016, 4, 2290–3000. [Google Scholar] [CrossRef]
- Bekenstein, J.D. A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287–298. [Google Scholar] [CrossRef]
- Raine, D.J. Mach’s Principle in General Relativity. Mon. Not. R. Astron. Soc. 1975, 171, 507–528. [Google Scholar] [CrossRef]
- Barbour, J.B.; Bertotti, B. Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 1982, A382, 295–306. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlatter, A.; Kastner, R.E. On Mach’s Principle in Entropic Gravity. Foundations 2024, 4, 146-155. https://doi.org/10.3390/foundations4020011
Schlatter A, Kastner RE. On Mach’s Principle in Entropic Gravity. Foundations. 2024; 4(2):146-155. https://doi.org/10.3390/foundations4020011
Chicago/Turabian StyleSchlatter, A., and R. E. Kastner. 2024. "On Mach’s Principle in Entropic Gravity" Foundations 4, no. 2: 146-155. https://doi.org/10.3390/foundations4020011
APA StyleSchlatter, A., & Kastner, R. E. (2024). On Mach’s Principle in Entropic Gravity. Foundations, 4(2), 146-155. https://doi.org/10.3390/foundations4020011