# The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics

## Abstract

**:**

## 1. Introduction: Quantum to Classical

## 2. Explicit Collapse vs. “Magical” Collapse

## 3. Linearity vs. Nonlinearity and Locality vs. Non-Locality

#### 3.1. Quantum Theory

#### 3.2. Classical Physics

#### 3.3. The Magical “Born Rule”

## 4. Quantum Space ≠ Real Spacetime: Some Physical Consequences

#### 4.1. Consequence One: No “Quantized” General Relativity

#### 4.2. Consequence Two: No “Zero-Point Energy” or Cosmological Constant Problem

#### 4.3. Consequence Three: Quantum “Particle” Reactions Do Not Happen in Spacetime but in Hilbert Space

#### 4.4. Consequence Four: No Black Hole “Information Paradox”

## 5. Some Proposed Alternatives to “Orthodox” Quantum Mechanics

#### 5.1. Everett/Many Worlds

#### 5.2. Explicit Collapse

#### 5.3. de Broglie–Bohm

## 6. Summary and Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Correction Statement

## References

- von Neumann, J. Mathematische Grundlagen der Quantenmechanik; Springer: Berlin/Heidelberg, Germany, 1932; translated as Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Born, M. Zur Quantenmechanik der Stossvorgänge. Z. Phys.
**1926**, 37, 863. [Google Scholar] [CrossRef] - Zurek, W.H. Pointer Basis of Quantum Apparatus: Into what Mixture does the Wave Packet Collapse? Phys. Rev. D
**1981**, 24, 1516. [Google Scholar] [CrossRef] - Zurek, W.H. Environment-Induced Superselection Rules. Phys. Rev. D
**1982**, 26, 1862. [Google Scholar] - Bell, J.S. On Wave Packet Reduction in the Coleman-Hepp Model. Helv. Phys. Acta
**1975**, 48, 93. [Google Scholar] - Adler, S.L. Why decoherence has not solved the measurement problem: A response to P.W. Anderson. Stud. Hist. Phil. Mod. Phys.
**2003**, 34, 135. [Google Scholar] [CrossRef] - Bell, J.S. Against “measurement”. Phys. World
**1990**, 3, 33. [Google Scholar] [CrossRef] - Wigner, E.P. The Problem of Measurement. Am. J. Phys.
**1963**, 31, 6. [Google Scholar] [CrossRef] - Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates—An Anthology of Partly-Baked Ideas; Good, I.J., Ed.; Basic Books: New York, NY, USA, 1962; p. 284. [Google Scholar]
- Hansson, J. Bell’s theorem and its tests: Proof that nature is superdeterministic—Not random. Phys. Essays.
**2020**, 33, 216. [Google Scholar] [CrossRef] - Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman and Co.: New Haven, CT, USA, 1973; p. 6. [Google Scholar]
- Bohr, N. Atomic Physics and Human Knowledge; John Wiley & Sons: Hoboken, NJ, USA, 1958. [Google Scholar]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwiss
**1935**, 23, 807, translated as The present Situationin Quantum Mechanics. Proc. Am. Phil. Soc.**1980**, 124, 323. [Google Scholar] [CrossRef] - Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev.
**1935**, 47, 777. [Google Scholar] [CrossRef] - Bohm, D. Quantum Theory; Prentice-Hall: Hoboken, NJ, USA, 1951. [Google Scholar]
- Clauser, J.F. Laboratory-Space and Configuration-Space Formulations of Quantum Mechanics, Versus Bell-Clauser-Horne-Shimony Local Realism, Versus Born’s Ambiguity; Jaeger, G., Simon, D., Sergienko, A.V., Greenberger, D., Zeilinger, A., Eds.; Chapter 3 in Quantum Arrangements; Springer-Nature: Berlin/Heidelberg, Germany, 2021; pp. 31–95. [Google Scholar]
- Pearle, P. Reduction of the state vector by a nonlinear Schrödinger equation. Phys. Rev. D
**1976**, 13, 857. [Google Scholar] [CrossRef] - Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**1986**, 34, 470. [Google Scholar] [CrossRef] [PubMed] - Penrose, R. Gravity and state vector reduction. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.J., Eds.; Clarendon Press: Oxford, UK, 1986; pp. 129–146. [Google Scholar]
- Diosi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A
**1987**, 120, 377. [Google Scholar] [CrossRef] - Hansson, J. Nonlinear gauge interactions: A possible solution to the “measurement problem” in quantum mechanics. Phys. Essays
**2010**, 23, 237. [Google Scholar] [CrossRef] - Berry, M. Quantum chaology, not quantum chaos. Phys. Scr.
**1989**, 40, 335. [Google Scholar] [CrossRef] - Bell, J.S. Beables for quantum field theory. In Quantum Implications: Essays in Honour of David Bohm; Hiley, B.J., Peat, F.D., Eds.; 1987; pp. 227–234. Available online: https://philpapers.org/rec/BELBFQ (accessed on 17 September 2023).
- Einstein, A. Über die Entwicklung unserer Anshauungen über das Wesen und die Konstitution der Strahlung. Phys. Zeitschr.
**1909**, 10, 817. [Google Scholar] - Bell, J.S. On the Einstein-Podolsky-Rosen paradox. Physics
**1964**, 1, 195. [Google Scholar] [CrossRef] - Freedman, S.J.; Clauser, J.F. Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett.
**1972**, 28, 938. [Google Scholar] [CrossRef] - Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett.
**1982**, 49, 91. [Google Scholar] [CrossRef] - Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time- Varying Analyzers. Phys. Rev. Lett.
**1982**, 49, 1804. [Google Scholar] [CrossRef] - Tittel, W.; Brendel, J.; Gisin, B.; Herzog, T.; Zbinden, H.; Gisin, N. Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A
**1998**, 57, 3229. [Google Scholar] [CrossRef] - Aspect, A. Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate. Physics
**2015**, 8, 123. [Google Scholar] [CrossRef] - Clauser, J.F.; Horne, M.A. Experimental consequences of objective local theories. Phys. Rev. D
**1974**, 10, 526. [Google Scholar] [CrossRef] - Hansson, J. Why Gravity is Non-Quantum. Int. J. Quant. Found. Suppl.
**2023**, 5, 1. [Google Scholar] - Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet.
**1948**, 51, 793. [Google Scholar] - Lifshitz, E.M. The Theory of Molecular Attractive Forces between Solids. J. Exp. Theor. Phys.
**1956**, 2, 73. [Google Scholar] - Jaffe, R.L. Casimir effect and the quantum vacuum. Phys. Rev. D
**2005**, 72, 021301(R). [Google Scholar] [CrossRef] - Arkani-Hamed, N.; Trnka, J. The Amplituhedron. J. High Energ. Phys.
**2014**, 2014, 30. [Google Scholar] [CrossRef] - Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D
**1976**, 14, 2460. [Google Scholar] [CrossRef] - Everett, H. Relative State Formulation of Quantum Mechanics. Rev. Mod. Phys.
**1957**, 29, 454. [Google Scholar] [CrossRef] - de Broglie, L. Non-Linear Wave Mechanics: A Causal Interpretation; Elsevier: Amsterdam, The Netherlands, 1960. [Google Scholar]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I. Phys. Rev.
**1952**, 85, 166. [Google Scholar] [CrossRef] - Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev.
**1952**, 85, 180. [Google Scholar] [CrossRef] - Hansson, J. A simple explanation of the non-appearance of physical gluons and quarks. Can. J. Phys.
**2002**, 80, 1093. [Google Scholar] [CrossRef] - Hansson, J. The “Proton Spin Crisis”—A Quantum Query. Prog. Phys.
**2010**, 3, 51. [Google Scholar]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hansson, J.
The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics. *Foundations* **2023**, *3*, 634-642.
https://doi.org/10.3390/foundations3040038

**AMA Style**

Hansson J.
The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics. *Foundations*. 2023; 3(4):634-642.
https://doi.org/10.3390/foundations3040038

**Chicago/Turabian Style**

Hansson, Johan.
2023. "The Magical “Born Rule” and Quantum “Measurement”: Implications for Physics" *Foundations* 3, no. 4: 634-642.
https://doi.org/10.3390/foundations3040038