Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions
Abstract
1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
3.1. Existence Results
3.2. Existence of a Unique Solution
4. Examples
5. Conclusions
- (i)
- four-point nonlocal coupled boundary conditions:
- (ii)
- purely coupled –Riemann–Liouville fractional integral boundary conditions:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Math. 2020, 18, 1879–1894. [Google Scholar] [CrossRef]
- Subramanian, M.; Gopal, T.N. Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative. Proyecciones 2020, 39, 155–1575. [Google Scholar] [CrossRef]
- Belbali, H.; Benbachir, M.; Etemad, S.; Park, C.; Rezapour, S. Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Math. 2022, 7, 14419–14433. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam-Hyers stability results of a coupled system of ψ–Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Wongcharoen, A.; Ntouyas, S.K.; Wongsantisuk, P.; Tariboon, J. Existence results for a nonlocal coupled system of sequential fractional differential equations involving ψ–Hilfer fractional derivatives. Adv. Math. Phys. 2021, 2021, 5554619. [Google Scholar] [CrossRef]
- Nuchpong, C.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions. Adv. Differ. Equ. 2021, 2021, 268. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k–Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J.; Alhodaly, M.S. Nonlocal integro-multi-point (k,ψ)-Hilfer type fractional boundary value problems. Mathematics 2022, 10, 2357. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Nonlocal boundary value problems for (k,ψ)-Hilfer fractional differential equations and inclusions. Foundations 2022, 2, 681–696. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Nuchpong, C.; Tariboon, J. On (k,ψ)-Hilfer fractional differential equations and inclusions with mixed (k,ψ)-derivative and integral boundary conditions. Axioms 2022, 11, 403. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. Fractal Fract. 2022, 6, 234. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations 2022, 2, 918-933. https://doi.org/10.3390/foundations2040063
Samadi A, Ntouyas SK, Ahmad B, Tariboon J. Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations. 2022; 2(4):918-933. https://doi.org/10.3390/foundations2040063
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, Bashir Ahmad, and Jessada Tariboon. 2022. "Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions" Foundations 2, no. 4: 918-933. https://doi.org/10.3390/foundations2040063
APA StyleSamadi, A., Ntouyas, S. K., Ahmad, B., & Tariboon, J. (2022). Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations, 2(4), 918-933. https://doi.org/10.3390/foundations2040063