Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
3.1. Existence Results
3.2. Existence of a Unique Solution
4. Examples
5. Conclusions
- (i)
- four-point nonlocal coupled boundary conditions:
- (ii)
- purely coupled –Riemann–Liouville fractional integral boundary conditions:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Nuchpong, C.; Ntouyas, S.K.; Tariboon, J. Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Math. 2020, 18, 1879–1894. [Google Scholar] [CrossRef]
- Subramanian, M.; Gopal, T.N. Analysis of boundary value problem with multi-point conditions involving Caputo-Hadamard fractional derivative. Proyecciones 2020, 39, 155–1575. [Google Scholar] [CrossRef]
- Belbali, H.; Benbachir, M.; Etemad, S.; Park, C.; Rezapour, S. Existence theory and generalized Mittag-Leffler stability for a nonlinear Caputo-Hadamard FIVP via the Lyapunov method. AIMS Math. 2022, 7, 14419–14433. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam-Hyers stability results of a coupled system of ψ–Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Wongcharoen, A.; Ntouyas, S.K.; Wongsantisuk, P.; Tariboon, J. Existence results for a nonlocal coupled system of sequential fractional differential equations involving ψ–Hilfer fractional derivatives. Adv. Math. Phys. 2021, 2021, 5554619. [Google Scholar] [CrossRef]
- Nuchpong, C.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann-Stieltjes integral multi-strip boundary conditions. Adv. Differ. Equ. 2021, 2021, 268. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k–Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the ψ–Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J.; Alhodaly, M.S. Nonlocal integro-multi-point (k,ψ)-Hilfer type fractional boundary value problems. Mathematics 2022, 10, 2357. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Nonlocal boundary value problems for (k,ψ)-Hilfer fractional differential equations and inclusions. Foundations 2022, 2, 681–696. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Nuchpong, C.; Tariboon, J. On (k,ψ)-Hilfer fractional differential equations and inclusions with mixed (k,ψ)-derivative and integral boundary conditions. Axioms 2022, 11, 403. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. Fractal Fract. 2022, 6, 234. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations 2022, 2, 918-933. https://doi.org/10.3390/foundations2040063
Samadi A, Ntouyas SK, Ahmad B, Tariboon J. Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations. 2022; 2(4):918-933. https://doi.org/10.3390/foundations2040063
Chicago/Turabian StyleSamadi, Ayub, Sotiris K. Ntouyas, Bashir Ahmad, and Jessada Tariboon. 2022. "Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions" Foundations 2, no. 4: 918-933. https://doi.org/10.3390/foundations2040063
APA StyleSamadi, A., Ntouyas, S. K., Ahmad, B., & Tariboon, J. (2022). Investigation of a Nonlinear Coupled (k, ψ)–Hilfer Fractional Differential System with Coupled (k, ψ)–Riemann–Liouville Fractional Integral Boundary Conditions. Foundations, 2(4), 918-933. https://doi.org/10.3390/foundations2040063